Refine
Department, Institute
- Fachbereich Informatik (2) (remove)
Year of publication
- 2013 (2) (remove)
Keywords
Safety applications require fast, precise and highly reliable sensors at low costs. This paper presents signal processing methods for an active multispectral optical point sensor instrumentation for which a first technical implementation exists. Due to the very demanding requirements for safeguarding equipment, these processing methods are targeted to run on a small embedded system with a guaranteed reaction time T < 2 ms and a sufficiently low failure rate according to applicable safety standards, e.g., ISO-13849. The proposed data processing concept includes a novel technique for distance-aided fusion of multispectral data in order to compensate for displacement-related alteration of the measured signal. The distance measuring is based on triangulation with precise results even for low-resolution detectors, thus strengthening the practical applicability. Furthermore, standard components, such as support vector machines (SVMs), are used for reliable material classification. All methods have been evaluated for variants of the underlying sensor principle. Therefore, the results of the evaluation are independent of any specific hardware.
This paper presents recent research on an active multispectral scanning sensor capable of classifying an object's surface material in order to distinguish between different kinds of materials and human skin. The sensor itself has already been presented in previous work and can be used in conjunction with safeguarding equipment at manually-fed machines or robot workplaces, for example. This work shows how an extended sensor system with advanced material classifiers can be used to provide additional value by distinguishing different materials of work pieces in order to suggest different tools or parameters for the machine (e.g. the use of a different saw blade or rotation speed at table saws). Additionally, a first implementation and evaluation of an active multispectral camera system addressing new safety applications is described. Both approaches intend to increase the productivity and the user's acceptance of the sensor technology.