Refine
Departments, institutes and facilities
Document Type
- Conference Object (57)
- Article (10)
- Preprint (10)
- Part of a Book (3)
- Report (3)
- Dataset (2)
Year of publication
Keywords
- Automatic Short Answer Grading (3)
- Cognitive robot control (2)
- Drosophila (2)
- Explainable robotics (2)
- Learning from experience (2)
- Navigation (2)
- Object detectors (2)
- Saliency methods (2)
- robot execution failures (2)
- robotics (2)
Swedish wheeled mobile robots have remarkable mobility properties allowing them to rotate and translate at the same time. Being holonomic systems, their kinematics model results in the possibility of designing separate and independent position and heading trajectory tracking control laws. Nevertheless, if these control laws should be implemented in the presence of unaccounted actuator saturation, the resulting saturated linear and angular velocity commands could interfere with each other thus dramatically affecting the overall expected performance. Based on Lyapunov’s direct method, a position and heading trajectory tracking control law for Swedish wheeled robots is developed. It explicitly accounts for actuator saturation by using ideas from a prioritized task based control framework.
With regard to performance well established SW-only design methodologies proceed by making the initial specification run first, then by enhancing its functionality and finally by optimizing it. When designing Embedded Systems (EbS) this approach is not viable since decisive design decisions like e.g. the estimation of required processing power or the identification of those parts of the specification which need to be delegated to dedicated HW depend on the fastness and fairness of the initial specification. We here propose a sequence of optimization steps embedded into the design flow, which enables a structured way to accelerate a given working EbS specification at different layers. This sequence of accelerations comprises algorithm selection, algorithm transformation, data transformation, implementation optimization and finally HW acceleration. It is analyzed how all acceleration steps are influenced by the specific attributes of the underlying EbS. The overall acceleration procedure is explained and quantified at hand of a real-life industrial example.
The development of robot control programs is a complex task. Many robots are different in their electrical and mechanical structure which is also reflected in the software. Specific robot software environments support the program development, but are mainly text-based and usually applied by experts in the field with profound knowledge of the target robot. This paper presents a graphical programming environment which aims to ease the development of robot control programs. In contrast to existing graphical robot programming environments, our approach focuses on the composition of parallel action sequences. The developed environment allows to schedule independent robot actions on parallel execution lines and provides mechanism to avoid side-effects of parallel actions. The developed environment is platform-independent and based on the model-driven paradigm. The feasibility of our approach is shown by the application of the sequencer to a simulated service robot and a robot for educational purpose.
Robust Indoor Localization Using Optimal Fusion Filter For Sensors And Map Layout Information
(2014)
Unexpected Situations in Service Robot Environment: Classification and Reasoning Using Naive Physics
(2014)
In the field of domestic service robots, recovery from faults is crucial to promote user acceptance. In this context we focus in particular on some specific faults, which arise from the interaction of a robot with its real world environment. Even a well-modelled robot may fail to perform its tasks successfully due to unexpected situations, which occur while interacting. These situations occur as deviations of properties of the objects (manipulated by the robot) from their expected values. Hence, they are experienced by the robot as external faults.
CASTLE is a co-design platform developed at GMD SET institute. It provides a number of design tools for configuring application specific design flows. This paper presents a walk through the CASTLE co-design environment, following the design flow of a video processing system. The design methodology and the tool usage for this real life example are described, as seen from a designers point of view. The design flow starts with a C/C++ program and gradually derives a register-transfer level description of a processor hardware, as well as the corresponding compiler for generating the processor opcode. The main results of each design step are presented and the usage of the CASTLE tools at each step is explained.
Co-design is concerned with the joint design of hardware and software making up an embedded computer system [Wol94]. A top down design flow for an embedded system begins with a system specification. If it is executable, it may be used for simulation, system verification or to identify algorithmical bottlenecks. In contrast to other chapters of this book, the specification is not developed in this case study, rather it is given from the beginning. Furthermore we are not concerned with partitioning or synthesis of dedicated HW. Instead we focus on the problem how to find an off-the-shelf micro-controller which implements the desired functionality and meets all specification constraints. If feasible, this is usually much cheaper then using dedicated hardware. This chapter will answer the question of feasibility for a real life problem from automobile industry.
A way of combining a relatively new sensor-technology, that is optical analog VLSI devices, with a standard digital omni-directional vision system is investigated. The sensor used is a neuromorphic analog VLSI sensor that estimates the global visual image motion. The sensor provides two analog output voltages that represent the components of the global optical flow vector. The readout is guided by an omni-directional mirror that maps the location of the ball and directs the robot to align its position so that a sensor-actuator module that includes the analog VLSI optical flow sensor can be activated. The purpose of the sensor-actuator module is to operate with a higher update rate than the standard vision system and thus increase the reactivity of the robot for very specific situations. This paper will demonstrate an application example where the robot is a goalkeeper with the task of defending the goal during a penalty kick.
Ein gebräuchliche Methodik beim Entwurf eingebetteter Systeme, in Anwendung besonders bei kleinen- und mittleren Unternehmen, geht folgendermaßen vor: Man nehme das bereits existierende Mikrokontroller Entwicklungspaket und bereits vorhandene Funktionen aus einer alten Systemrealisierung, variiere bzw. passe sie an die neue Aufgabe an und teste dann durch Emulation, ob die Spezifikation erfüllt ist.
Robots, which are able to carry out their tasks robustly in real world environments, are not only desirable but necessary if we want them to be more welcome for a wider audience. But very often they may fail to execute their actions successfully because of insufficient information about behaviour of objects used in the actions.
The ability to track moving people is a key aspect of autonomous robot systems in real-world environments. Whilst for many tasks knowing the approximate positions of people may be sufficient, the ability to identify unique people is needed to accurately count people in the real world. To accomplish the people counting task, a robust system for people detection, tracking and identification is needed.
Improving Robustness of Task Execution Against External Faults Using Simulation Based Approach
(2013)
Robots interacting in complex and cluttered environments may face unexpected situations referred to as external faults which prohibit the successful completion of their tasks. In order to function in a more robust manner, robots need to recognise these faults and learn how to deal with them in the future. We present a simulation-based technique to avoid external faults occurring during execusion releasing actions of a robot. Our technique utilizes simulation to generate a set of labeled examples which are used by a histogram algorithm to compute a safe region. A safe region consists of a set of releasing states of an object that correspond to successful performances of the action. This technique also suggests a general solution to avoid the occurrence of external faults for not only the current, observable object but also for any other object of the same shape but different size.
This project investigated the viability of using the Microsoft Kinect in order to obtain reliable Red-Green-Blue-Depth (RGBD) information. This explored the usability of the Kinect in a variety of environments as well as its ability to detect different classes of materials and objects. This was facilitated through the implementation of Random Sample and Consensus (RANSAC) based algorithms and highly parallelized workflows in order to provide time sensitive results. We found that the Kinect provides detailed and reliable information in a time sensitive manner. Furthermore, the project results recommend usability and operational parameters for the use of the Kinect as a scientific research tool.
While executing actions, service robots may experience external faults because of insufficient knowledge about the actions' preconditions. The possibility of encountering such faults can be minimised if symbolic and geometric precondition models are combined into a representation that specifies how and where actions should be executed. This work investigates the problem of learning such action execution models and the manner in which those models can be generalised. In particular, we develop a template-based representation of execution models, which we call delta models, and describe how symbolic template representations and geometric success probability distributions can be combined for generalising the templates beyond the problem instances on which they are created. Our experimental analysis, which is performed with two physical robot platforms, shows that delta models can describe execution-specific knowledge reliably, thus serving as a viable model for avoiding the occurrence of external faults.
In the design of robot skills, the focus generally lies on increasing the flexibility and reliability of the robot execution process; however, typical skill representations are not designed for analysing execution failures if they occur or for explicitly learning from failures. In this paper, we describe a learning-based hybrid representation for skill parameterisation called an execution model, which considers execution failures to be a natural part of the execution process. We then (i) demonstrate how execution contexts can be included in execution models, (ii) introduce a technique for generalising models between object categories by combining generalisation attempts performed by a robot with knowledge about object similarities represented in an ontology, and (iii) describe a procedure that uses an execution model for identifying a likely hypothesis of a parameterisation failure. The feasibility of the proposed methods is evaluated in multiple experiments performed with a physical robot in the context of handle grasping, object grasping, and object pulling. The experimental results suggest that execution models contribute towards avoiding execution failures, but also represent a first step towards more introspective robots that are able to analyse some of their execution failures in an explicit manner.
Loading of shipping containers for dairy products often includes a press-fit task, which involves manually stacking milk cartons in a container without using pallets or packaging. Automating this task with a mobile manipulator can reduce worker strain, and also enhance the efficiency and safety of the container loading process. This paper proposes an approach called Adaptive Compliant Control with Integrated Failure Recovery (ACCIFR), which enables a mobile manipulator to reliably perform the press-fit task. We base the approach on a demonstration learning-based compliant control framework, such that we integrate a monitoring and failure recovery mechanism for successful task execution. Concretely, we monitor the execution through distance and force feedback, detect collisions while the robot is performing the press-fit task, and use wrench measurements to classify the direction of collision; this information informs the subsequent recovery process. We evaluate the method on a miniature container setup, considering variations in the (i) starting position of the end effector, (ii) goal configuration, and (iii) object grasping position. The results demonstrate that the proposed approach outperforms the baseline demonstration-based learning framework regarding adaptability to environmental variations and the ability to recover from collision failures, making it a promising solution for practical press-fit applications.
Robot deployment in realistic dynamic environments is a challenging problem despite the fact that robots can be quite skilled at a large number of isolated tasks. One reason for this is that robots are rarely equipped with powerful introspection capabilities, which means that they cannot always deal with failures in a reasonable manner; in addition, manual diagnosis is often a tedious task that requires technicians to have a considerable set of robotics skills.
Robot deployment in realistic environments is challenging despite the fact that robots can be quite skilled at a large number of isolated tasks. One reason for this is that robots are rarely equipped with powerful introspection capabilities, which means that they cannot always deal with failures in an acceptable manner; in addition, manual diagnosis is often a tedious task that requires technicians to have a considerable set of robotics skills. In this paper, we discuss our ongoing efforts to address some of these problems. In particular, we (i) present our early efforts at developing a robotic black box and consider some factors that complicate its design, (ii) explain our component and system monitoring concept, and (iii) describe the necessity for remote monitoring and experimentation as well as our initial attempts at performing those. Our preliminary work opens a range of promising directions for making robots more usable and reliable in practice.
The increasing complexity of tasks that are required to be executed by robots demands higher reliability of robotic platforms. For this, it is crucial for robot developers to consider fault diagnosis. In this study, a general non-intrusive fault diagnosis system for robotic platforms is proposed. A mini-PC is non-intrusively attached to a robot that is used to detect and diagnose faults. The health data and diagnosis produced by the mini-PC is then standardized and transmitted to a remote-PC. A storage device is also attached to the mini-PC for data logging of health data in case of loss of communication with the remote-PC. In this study, a hybrid fault diagnosis method is compared to consistency-based diagnosis (CBD), and CBD is selected to be deployed on the system. The proposed system is modular and can be deployed on different robotic platforms with minimum setup.
Background: Virtual reality combined with spherical treadmills is used across species for studying neural circuits underlying navigation.
New Method: We developed an optical flow-based method for tracking treadmil ball motion in real-time using a single high-resolution camera.
Results: Tracking accuracy and timing were determined using calibration data. Ball tracking was performed at 500 Hz and integrated with an open source game engine for virtual reality projection. The projection was updated at 120 Hz with a latency with respect to ball motion of 30 ± 8 ms.
Comparison: with Existing Method(s) Optical flow based tracking of treadmill motion is typically achieved using optical mice. The camera-based optical flow tracking system developed here is based on off-the-shelf components and offers control over the image acquisition and processing parameters. This results in flexibility with respect to tracking conditions – such as ball surface texture, lighting conditions, or ball size – as well as camera alignment and calibration.
Conclusions: A fast system for rotational ball motion tracking suitable for virtual reality animal behavior across different scales was developed and characterized.
Data-Driven Robot Fault Detection and Diagnosis Using Generative Models: A Modified SFDD Algorithm
(2019)
This paper presents a modification of the data-driven sensor-based fault detection and diagnosis (SFDD) algorithm for online robot monitoring. Our version of the algorithm uses a collection of generative models, in particular restricted Boltzmann machines, each of which represents the distribution of sliding window correlations between a pair of correlated measurements. We use such models in a residual generation scheme, where high residuals generate conflict sets that are then used in a subsequent diagnosis step. As a proof of concept, the framework is evaluated on a mobile logistics robot for the problem of recognising disconnected wheels, such that the evaluation demonstrates the feasibility of the framework (on the faulty data set, the models obtained 88.6% precision and 75.6% recall rates), but also shows that the monitoring results are influenced by the choice of distribution model and the model parameters as a whole.
In Sensor-based Fault Detection and Diagnosis (SFDD) methods, spatial and temporal dependencies among the sensor signals can be modeled to detect faults in the sensors, if the defined dependencies change over time. In this work, we model Granger causal relationships between pairs of sensor data streams to detect changes in their dependencies. We compare the method on simulated signals with the Pearson correlation, and show that the method elegantly handles noise and lags in the signals and provides appreciable dependency detection. We further evaluate the method using sensor data from a mobile robot by injecting both internal and external faults during operation of the robot. The results show that the method is able to detect changes in the system when faults are injected, but is also prone to detecting false positives. This suggests that this method can be used as a weak detection of faults, but other methods, such as the use of a structural model, are required to reliably detect and diagnose faults.
In the field of service robots, dealing with faults is crucial to promote user acceptance. In this context, this work focuses on some specific faults which arise from the interaction of a robot with its real world environment due to insufficient knowledge for action execution.
In our previous work [1], we have shown that such missing knowledge can be obtained through learning by experimentation. The combination of symbolic and geometric models allows us to represent action execution knowledge effectively. However we did not propose a suitable representation of the symbolic model.
In this work we investigate such symbolic representation and evaluate its learning capability. The experimental analysis is performed on four use cases using four different learning paradigms. As a result, the symbolic representation together with the most suitable learning paradigm are identified.
The majority of biomedical knowledge is stored in structured databases or as unstructured text in scientific publications. This vast amount of information has led to numerous machine learning-based biological applications using either text through natural language processing (NLP) or structured data through knowledge graph embedding models (KGEMs). However, representations based on a single modality are inherently limited. To generate better representations of biological knowledge, we propose STonKGs, a Sophisticated Transformer trained on biomedical text and Knowledge Graphs. This multimodal Transformer uses combined input sequences of structured information from KGs and unstructured text data from biomedical literature to learn joint representations. First, we pre-trained STonKGs on a knowledge base assembled by the Integrated Network and Dynamical Reasoning Assembler (INDRA) consisting of millions of text-triple pairs extracted from biomedical literature by multiple NLP systems. Then, we benchmarked STonKGs against two baseline models trained on either one of the modalities (i.e., text or KG) across eight different classification tasks, each corresponding to a different biological application. Our results demonstrate that STonKGs outperforms both baselines, especially on the more challenging tasks with respect to the number of classes, improving upon the F1-score of the best baseline by up to 0.083. Additionally, our pre-trained model as well as the model architecture can be adapted to various other transfer learning applications. Finally, the source code and pre-trained STonKGs models are available at https://github.com/stonkgs/stonkgs and https://huggingface.co/stonkgs/stonkgs-150k.
In the field of service robots, dealing with faults is crucial to promote user acceptance. In this context, this work focuses on some specific faults which arise from the interaction of a robot with its real world environment due to insufficient knowledge for action execution. In our previous work [1], we have shown that such missing knowledge can be obtained through learning by experimentation. The combination of symbolic and geometric models allows us to represent action execution knowledge effectively. However we did not propose a suitable representation of the symbolic model. In this work we investigate such symbolic representation and evaluate its learning capability. The experimental analysis is performed on four use cases using four different learning paradigms. As a result, the symbolic representation together with the most suitable learning paradigm are identified.
MOTIVATION
The majority of biomedical knowledge is stored in structured databases or as unstructured text in scientific publications. This vast amount of information has led to numerous machine learning-based biological applications using either text through natural language processing (NLP) or structured data through knowledge graph embedding models (KGEMs). However, representations based on a single modality are inherently limited.
RESULTS
To generate better representations of biological knowledge, we propose STonKGs, a Sophisticated Transformer trained on biomedical text and Knowledge Graphs (KGs). This multimodal Transformer uses combined input sequences of structured information from KGs and unstructured text data from biomedical literature to learn joint representations in a shared embedding space. First, we pre-trained STonKGs on a knowledge base assembled by the Integrated Network and Dynamical Reasoning Assembler (INDRA) consisting of millions of text-triple pairs extracted from biomedical literature by multiple NLP systems. Then, we benchmarked STonKGs against three baseline models trained on either one of the modalities (i.e., text or KG) across eight different classification tasks, each corresponding to a different biological application. Our results demonstrate that STonKGs outperforms both baselines, especially on the more challenging tasks with respect to the number of classes, improving upon the F1-score of the best baseline by up to 0.084 (i.e., from 0.881 to 0.965). Finally, our pre-trained model as well as the model architecture can be adapted to various other transfer learning applications.
AVAILABILITY
We make the source code and the Python package of STonKGs available at GitHub (https://github.com/stonkgs/stonkgs) and PyPI (https://pypi.org/project/stonkgs/). The pre-trained STonKGs models and the task-specific classification models are respectively available at https://huggingface.co/stonkgs/stonkgs-150k and https://zenodo.org/communities/stonkgs.
SUPPLEMENTARY INFORMATION
Supplementary data are available at Bioinformatics online.
Grasp verification is advantageous for autonomous manipulation robots as they provide the feedback required for higher level planning components about successful task completion. However, a major obstacle in doing grasp verification is sensor selection. In this paper, we propose a vision based grasp verification system using machine vision cameras, with the verification problem formulated as an image classification task. Machine vision cameras consist of a camera and a processing unit capable of on-board deep learning inference. The inference in these low-power hardware are done near the data source, reducing the robot's dependence on a centralized server, leading to reduced latency, and improved reliability. Machine vision cameras provide the deep learning inference capabilities using different neural accelerators. Although, it is not clear from the documentation of these cameras what is the effect of these neural accelerators on performance metrics such as latency and throughput. To systematically benchmark these machine vision cameras, we propose a parameterized model generator that generates end to end models of Convolutional Neural Networks(CNN). Using these generated models we benchmark latency and throughput of two machine vision cameras, JeVois A33 and Sipeed Maix Bit. Our experiments demonstrate that the selected machine vision camera and the deep learning models can robustly verify grasp with 97% per frame accuracy.
Abschlussbericht zum BMBF-Fördervorhaben Enabling Infrastructure for HPC-Applications (EI-HPC)
(2020)
Comparative Evaluation of Pretrained Transfer Learning Models on Automatic Short Answer Grading
(2020)
Automatic Short Answer Grading (ASAG) is the process of grading the student answers by computational approaches given a question and the desired answer. Previous works implemented the methods of concept mapping, facet mapping, and some used the conventional word embeddings for extracting semantic features. They extracted multiple features manually to train on the corresponding datasets. We use pretrained embeddings of the transfer learning models, ELMo, BERT, GPT, and GPT-2 to assess their efficiency on this task. We train with a single feature, cosine similarity, extracted from the embeddings of these models. We compare the RMSE scores and correlation measurements of the four models with previous works on Mohler dataset. Our work demonstrates that ELMo outperformed the other three models. We also, briefly describe the four transfer learning models and conclude with the possible causes of poor results of transfer learning models.
When a robotic agent experiences a failure while acting in the world, it should be possible to discover why that failure has occurred, namely to diagnose the failure. In this paper, we argue that the diagnosability of robot actions, at least in a classical sense, is a feature that cannot be taken for granted since it strongly depends on the underlying action representation. We specifically define criteria that determine the diagnosability of robot actions. The diagnosability question is then analysed in the context of a handle manipulation action, such that we discuss two different representations of the action – a composite policy with a learned success model for the action parameters, and a neural network-based monolithic policy – both of which exist on different sides of the diagnosability spectrum. Through this comparison, we conclude that composite actions are more suited to explicit diagnosis, but representations with less prior knowledge are more flexible. This suggests that model learning may provide balance between flexibility and diagnosability; however, data-driven diagnosis methods also need to be enhanced in order to deal with the complexity of modern robots.
Efficient and comprehensive assessment of students knowledge is an imperative task in any learning process. Short answer grading is one of the most successful methods in assessing the knowledge of students. Many supervised learning and deep learning approaches have been used to automate the task of short answer grading in the past. We investigate why assistive grading with active learning would be the next logical step in this task as there is no absolute ground truth answer for any question and the task is very subjective in nature. We present a fast and easy method to harness the power of active learning and natural language processing in assisting the task of grading short answer questions. A webbased GUI is designed and implemented to incorporate an interactive short answer grading system. The experiments show that active learning saves the time and effort of graders in assessment and reaches the performance of supervised learning with less amount of graded answers for training.