Refine
Departments, institutes and facilities
Document Type
- Article (47)
- Part of a Book (9)
- Report (2)
Year of publication
Keywords
- apoptosis (8)
- Bcl-2 (3)
- DNA typing (3)
- cell death (3)
- unfolded protein response (3)
- IRE1 (2)
- Illegal Wildlife Trade (2)
- PERK (2)
- Programmed cell death (2)
- SNPSTR (2)
Suprabasal BCL-2 Expression Does Not Sensitize to Chemically-induced Skin Cancer in Transgenic Mice
(2008)
It has become increasingly clear that caspases, far from being merely cell death effectors, have a much wider range of functions within the cell. These functions are as diverse as signal transduction and cytoskeletal remodeling, and caspases are now known to have an essential role in cell proliferation, migration, and differentiation. There is also evidence that apoptotic cells themselves can direct the behavior of nearby cells through the caspase-dependent secretion of paracrine signaling factors. In some processes, including the differentiation of skeletal muscle myoblasts, both caspase activation in differentiating cells as well as signaling from apoptotic cells has been reported. Here, we review the non-apoptotic outcomes of caspase activity in a range of different model systems and attempt to integrate this knowledge.
Forensic DNA profiles are established by multiplex PCR amplification of a set of highly variable short tandem repeat (STR) loci followed by capillary electrophoresis (CE) as a means to assign alleles to PCR products of differential length. Recently, CE analysis of STR amplicons has been supplemented by high-throughput next generation sequencing (NGS) techniques that are able to detect isoalleles bearing sequence polymorphisms and allow for an improved analysis of degraded DNA. Several such assays have been commercialised and validated for forensic applications. However, these systems are cost-effective only when applied to high numbers of samples. We report here an alternative, cost-efficient shallow-sequence output NGS assay called maSTR assay that, in conjunction with a dedicated bioinformatics pipeline called SNiPSTR, can be implemented with standard NGS instrumentation. In a back-to-back comparison with a CE-based, commercial forensic STR kit, we find that for samples with low DNA content, with mixed DNA from different individuals, or containing PCR inhibitors, the maSTR assay performs equally well, and with degraded DNA is superior to CE-based analysis. Thus, the maSTR assay is a simple, robust and cost-efficient NGS-based STR typing method applicable for human identification in forensic and biomedical contexts.
Trade of wild-caught animals is illegal for many taxa and in many countries. Common regulatory procedures involve documentation and marking techniques. However, these procedures are subject to fraud and thus should be complemented by routine genetic testing in order to authenticate the captive-bred origin of animals intended for trade. A suitable class of genetic markers are SNPSTRs that combine a short tandem repeat (STR) and single nucleotide polymorphisms (SNPs) within one amplicon. This combined marker type can be used for genetic identification and for parentage analyses and in addition, provides insight into haplotype history. As a proof of principle, this study establishes a set of 20 SNPSTR markers for Athene noctua, one of the most trafficked owls in CITES Appendix II. These markers can be coamplified in a single multiplex reaction. Based on population data, the percentage of observed and expected heterozygosities of the markers ranged from 0.400 to 1.000 and 0.545 to 0.850, respectively. A combined probability of identity of 5.3*10-23 was achieved with the whole set, and combined parentage exclusion probabilities reached over 99.99%, even if the genotype of one parent was missing. A direct comparison of an owl family and an unrelated owl demonstrated the applicability of the SNPSTR set in parentage testing. The established SNPSTR set thus proved to be highly useful for identifying individuals and analysing parentage to determine wild or captive origin. We propose to implement SNPSTR-based routine certification in wildlife trade as a way to reveal animal laundering and misdeclaration of wild-caught animals.
The development of whole-genome amplification (WGA) techniques has opened up new avenues for genetic analysis and genome research, in particular by facilitating the genome-wide analysis of few or even single copies of genomic DNA, such as from single cells (prokaryotic or eukaryotic) or virions. Using WGA, the few copies of genomic DNA obtained from such entities are unspecifically amplified using PCR or PCR-related processes in order to obtain higher DNA quantities that can then be successfully analysed further.
In 2018, in the US alone, it is estimated that 268,670 people will be diagnosed with breast cancer, and that 41,400 will die from it. Since breast cancers often become resistant to therapies, and certain breast cancers lack therapeutic targets, new approaches are urgently required. A cell-stress response pathway, the unfolded protein response (UPR), has emerged as a promising target for the development of novel breast cancer treatments. This pathway is activated in response to a disturbance in endoplasmic reticulum (ER) homeostasis but has diverse physiological and disease-specific functions. In breast cancer, UPR signalling promotes a malignant phenotype and can confer tumours with resistance to widely used therapies. Here, we review several roles for UPR signalling in breast cancer, highlighting UPR-mediated therapy resistance and the potential for targeting the UPR alone or in combination with existing therapies.
Triple-negative breast cancer (TNBC) lacks targeted therapies and has a worse prognosis than other breast cancer subtypes, underscoring an urgent need for new therapeutic targets and strategies. IRE1 is an endoplasmic reticulum (ER) stress sensor, whose activation is predominantly linked to the resolution of ER stress and, in the case of severe stress, to cell death. Here we demonstrate that constitutive IRE1 RNase activity contributes to basal production of pro-tumorigenic factors IL-6, IL-8, CXCL1, GM-CSF, and TGFβ2 in TNBC cells. We further show that the chemotherapeutic drug, paclitaxel, enhances IRE1 RNase activity and this contributes to paclitaxel-mediated expansion of tumor-initiating cells. In a xenograft mouse model of TNBC, inhibition of IRE1 RNase activity increases paclitaxel-mediated tumor suppression and delays tumor relapse post therapy. We therefore conclude that inclusion of IRE1 RNase inhibition in therapeutic strategies can enhance the effectiveness of current chemotherapeutics.
Apoptosis in the terminal endbud of the murine mammary gland: a mechanism of ductal morphogenesis
(1996)
Expression of the apoptosis-inhibitory protein Bcl-2 has frequently been detected in human cancer including mammary carcinoma. The functional significance of its expression has been well established in experimental tumors of the lymphoid system, however, remains to be elucidated for epithelial tumors. In order to assess the role of Bcl-2 in mammary tumorigenesis we have generated WAP-bcl-2 transgenic mice. The strong overexpression of Bcl-2 in lactating mammary glands was preserved during early postlactational involution and apoptosis of alveolar epithelial cells was prevented without influencing the dedifferentiation of the milk-producing epithelium. Although Bcl-2 overexpression was not sufficient to induce spontaneous tumors it, however, led to an accelerated development of MMTV myc transgene-induced mammary tumors. In the mammary glands of MMTV myc transgenic mice, a high proportion of apoptotic cells was detected which was significantly reduced in the mammary glands of WAP-bcl-2/ MMTV myc double transgenic mice. Taken together, these results suggest that Bcl-2 contributes to mammary tumorigenesis by inhibiting apoptosis.
Gain of Bcl-2 is more potent than bax loss in regulating mammary epithelial cell survival in vivo
(1999)
The impact of gain of Bcl-2 function on mammary epithelial cell survival was compared with loss of Bax function during the two stages of mammary gland involution. Bcl-2 gain of function reduced apoptosis 50% during the first stage and increased cell survival 70% during the second stage. Complete loss of Bax reduced apoptosis by 20% during the first stage without second stage effect. Partial loss of Bax was ineffective but increased cell survival 2.4-fold when combined with Bcl-2 gain. Gain of Bcl-2 function is more potent than loss of Bax function in regulating mammary epithelial cell survival in vivo.
Bcl-2 is known to have dual antiproliferative and antiapoptotic roles. Overexpression of Bcl-2 in the mammary gland using a whey acidic protein (WAP) promoter-driven Bcl-2 transgene inhibits apoptosis in the mammary gland during pregnancy, lactation, and involution, and also counteracts apoptosis induced by overexpression of a mutant p53 transgene (WAP-p53 172 R-L). WAP-Bcl-2 mice and nontransgenic controls were treated with the carcinogen dimethylbenz(a)anthracene (DMBA). Surprisingly, the nontransgenic mice developed mammary tumors with decreased latency. Tumors arising in WAP-Bcl-2 mice displayed substantially reduced levels of proliferation relative to those seen in nontransgenic mice (P < 0.015), perhaps resulting in the observed increase in tumor latency following carcinogen treatment. This WAP-Bcl-2 mouse tumor model reflects the situation seen in some human breast cancers overexpressing Bcl-2, where expression of Bcl-2 has been shown to correlate with a lower proliferative index in tumors.
Bcl-2 is an anti-apoptotic and anti-proliferative protein over-expressed in several different human cancers including breast. Gain of Bcl-2 function in mammary epithelial cells was superimposed on the WAP-TAg transgenic mouse model of breast cancer progression to determine its effect on epithelial cell survival and proliferation at three key stages in oncogenesis: the initial proliferative process, hyperplasia, and cancer. During the initial proliferative process, Bcl-2 strongly inhibited both apoptosis and mitotic activity. However as tumorigenesis progressed to hyperplasia and adenocarcinoma, the inhibitory effects on mitotic activity were lost. In contrast, anti-apoptotic activity persisted in both hyperplasias and adenocarcinomas. These results demonstrate that the inhibitory effect of Bcl-2 on epithelial cell proliferation and apoptosis can separate during cancer progression. In this model, retention of anti-apoptotic activity with loss of anti-proliferative action resulted in earlier tumor presentation.
Bcl-2 is an anti-apoptotic and anti-proliferative protein over-expressed in several different human cancers including breast. Gain of Bcl-2 function in mammary epithelial cells was superimposed on the WAP-TAg transgenic mouse model of breast cancer progression to determine its effect on epithelial cell survival and proliferation at three key stages in oncogenesis: the initial proliferative process, hyperplasia, and cancer. During the initial proliferative process, Bcl-2 strongly inhibited both apoptosis and mitotic activity. However as tumorigenesis progressed to hyperplasia and adenocarcinoma, the inhibitory effects on mitotic activity were lost. In contrast, anti-apoptotic activity persisted in both hyperplasias and adenocarcinomas. These results demonstrate that the inhibitory effect of Bcl-2 on epithelial cell proliferation and apoptosis can separate during cancer progression. In this model, retention of anti-apoptotic activity with loss of anti-proliferative action resulted in earlier tumor presentation.
//
Bcl-2 is an anti-apoptotic and anti-proliferative protein over-expressed in several different human cancers including breast. Gain of Bcl-2 function in mammary epithelial cells was superimposed on the WAP-TAg transgenic mouse model of breast cancer progression to determine its effect on epithelial cell survival and proliferation at three key stages in oncogenesis: the initial proliferative process, hyperplasia, and cancer. During the initial proliferative process, Bcl-2 strongly inhibited both apoptosis and mitotic activity. However as tumorigenesis progressed to hyperplasia and adenocarcinoma, the inhibitory effects on mitotic activity were lost. In contrast, anti-apoptotic activity persisted in both hyperplasias and adenocarcinomas. These results demonstrate that the inhibitory effect of Bcl-2 on epithelial cell proliferation and apoptosis can separate during cancer progression. In this model, retention of anti-apoptotic activity with loss of anti-proliferative action resulted in earlier tumor presentation.
The AP-2 family of transcription factors consists of five different proteins in humans and mice: AP-2alpha, AP-2beta, AP-2gamma, AP-2delta and AP-2epsilon. Frogs and fish have known orthologs of some but not all of these proteins, and homologs of the family are also found in protochordates, insects and nematodes. The proteins have a characteristic helix-span-helix motif at the carboxyl terminus, which, together with a central basic region, mediates dimerization and DNA binding. The amino terminus contains the transactivation domain. AP-2 proteins are first expressed in primitive ectoderm of invertebrates and vertebrates; in vertebrates, they are also expressed in the emerging neural-crest cells, and AP-2alpha-/- animals have impairments in neural-crest-derived facial structures. AP-2beta is indispensable for kidney development and AP-2gamma is necessary for the formation of trophectoderm cells shortly after implantation; AP-2alpha and AP-2gamma levels are elevated in human mammary carcinoma and seminoma. The general functions of the family appear to be the cell-type-specific stimulation of proliferation and the suppression of terminal differentiation during embryonic development.
BACKGROUND
During pregnancy the mammary epithelium undergoes a complex developmental process which culminates in the generation of the milk-secreting epithelium. Secretory epithelial cells display lactogenic differentiation which is characterized by the expression of milk protein genes, such as beta-casein or whey acidic protein (WAP). Transcription factors AP-2alpha and AP-2gamma are downregulated during lactation, and their overexpression in transgenic mice impaired the secretory differentiation of the mammary epithelium, resulting in lactation failure. To explore whether the downregulation of AP-2alpha and AP-2gamma is of functional significance for lactogenic differentiation, we analyzed the expression of the AP-2 family members during the lactogenic differentiation of HC11 mammary epithelial cells in vitro. Differentiation of HC11 cells was induced following established protocols by applying the lactogenic hormones prolactin, dexamethasone and insulin.
FINDINGS
HC11 cells express all AP-2 family members except AP-2delta. Using RT-PCR we could not detect a downregulation of any of these genes during the lactogenic differentiation of HC11 cells in vitro. This finding was confirmed for AP-2alpha and AP-2gamma using Northern analysis. Differentiating HC11 cells displayed lower expression levels of milk protein genes than mammary glands of mid-pregnant or lactating mice.
CONCLUSION
The extent of lactogenic differentiation of HC11 cells in vitro is limited compared to mammary epithelium undergoing secretory differentiation in vivo. Downregulation of AP-2 transcription factor genes is not required for lactogenic differentiation of HC11 cells but may functionally be involved in aspects of lactogenic differentiation in vivo that are not reflected by the HC11 system.
BACKGROUND
Neuronal migration is a crucial process that allows neurons to reach their correct target location to allow the nervous system to function properly. AP-2alpha is a transcription factor essential for neural crest cell migration and its mutation results in apoptosis within this cell population, as demonstrated by genetic models.
RESULTS
We down-modulated AP-2alpha expression in GN-11 neurons by RNA interference and observe reduced neuron migration following the activation of a specific genetic programme including the Adhesion Related Kinase (Axl) gene. We prove that Axl is able to coordinate migration per se and by ChIP and promoter analysis we observe that its transcription is directly driven by AP-2alpha via the binding to one or more functional AP-2alpha binding sites present in its regulatory region. Analysis of migration in AP-2alpha null mouse embryo fibroblasts also reveals an essential role for AP-2alpha in cell movement via the activation of a distinct genetic programme.
CONCLUSION
We show that AP-2alpha plays an essential role in cell movement via the activation of cell-specific genetic programmes. Moreover, we demonstrate that the AP-2alpha regulated gene Axl is an essential player in GN-11 neuron migration.
BACKGROUND
Activator protein-2 (AP-2) transcription factors are critically involved in a variety of fundamental cellular processes such as proliferation, differentiation and apoptosis and have also been implicated in carcinogenesis. Expression of the family members AP-2alpha and AP-2gamma is particularly well documented in malignancies of the female breast. Despite increasing evaluation of single AP-2 isoforms in mammary tumors the functional role of concerted expression of multiple AP-2 isoforms in breast cancer remains to be elucidated. AP-2 proteins can form homo- or heterodimers, and there is growing evidence that the net effect whether a cell will proliferate, undergo apoptosis or differentiate is partly dependent on the balance between different AP-2 isoforms.
METHODS
We simultaneously interfered with all AP-2 isoforms expressed in ErbB-2-positive murine N202.1A breast cancer cells by conditionally over-expressing a dominant-negative AP-2 mutant.
RESULTS
We show that interference with AP-2 protein function lead to reduced cell number, induced apoptosis and increased chemo- and radiation-sensitivity. Analysis of global gene expression changes upon interference with AP-2 proteins identified 139 modulated genes (90 up-regulated, 49 down-regulated) compared with control cells. Gene Ontology (GO) investigations for these genes revealed Cell Death and Cell Adhesion and Migration as the main functional categories including 25 and 12 genes, respectively. By using information obtained from Ingenuity Pathway Analysis Systems we were able to present proven or potential connections between AP-2 regulated genes involved in cell death and response to chemo- and radiation therapy, (i.e. Ctgf, Nrp1, Tnfaip3, Gsta3) and AP-2 and other main apoptosis players and to create a unique network.
CONCLUSIONS
Expression of AP-2 transcription factors in breast cancer cells supports proliferation and contributes to chemo- and radiation-resistance of tumor cells by impairing the ability to induce apoptosis. Therefore, interference with AP-2 function could increase the sensitivity of tumor cells towards therapeutic intervention.
One function ascribed to apoptosis is the suicidal destruction of potentially harmful cells, such as cancerous cells. Hence, their growth depends on evasion of apoptosis, which is considered as one of the hallmarks of cancer. Apoptosis is ultimately carried out by the sequential activation of initiator and executioner caspases, which constitute a family of intracellular proteases involved in dismantling the cell in an ordered fashion. In cancer, therefore, one would anticipate caspases to be frequently rendered inactive, either by gene silencing or by somatic mutations. From clinical data, however, there is little evidence that caspase genes are impaired in cancer. Executioner caspases have only rarely been found mutated or silenced, and also initiator caspases are only affected in particular types of cancer. There is experimental evidence from transgenic mice that certain initiator caspases, such as caspase-8 and -2, might act as tumor suppressors. Loss of the initiator caspase of the intrinsic apoptotic pathway, caspase-9, however, did not promote cellular transformation. These data seem to question a general tumor-suppressive role of caspases. We discuss several possible ways how tumor cells might evade the need for alterations of caspase genes. First, alternative splicing in tumor cells might generate caspase variants that counteract apoptosis. Second, in tumor cells caspases might be kept in check by cellular caspase inhibitors such as c-FLIP or XIAP. Third, pathways upstream of caspase activation might be disrupted in tumor cells. Finally, caspase-independent cell death mechanisms might abrogate the selection pressure for caspase inactivation during tumor development. These scenarios, however, are hardly compatible with the considerable frequency of spontaneous apoptosis occurring in several cancer types. Therefore, alternative concepts might come into play, such as compensatory proliferation. Herein, apoptosis and/or non-apoptotic functions of caspases may even promote tumor development. Moreover, experimental evidence suggests that caspases might play non-apoptotic roles in processes that are crucial for tumorigenesis, such as cell proliferation, migration, or invasion. We thus propose a model wherein caspases are preserved in tumor cells due to their functional contributions to development and progression of tumors.
Mouse mammary gland involution is associated with cytochrome c release and caspase activation
(2001)
Transcription factor AP-2gamma, a novel marker of gonocytes and seminomatous germ cell tumors
(2005)
Intimate swabs taken for examination in sexual assault cases typically yield mixtures of sperm and epithelial cell types. While powerful, differential extraction protocols to overcome such cell type mixtures by separate lysis of epithelial cells and spermatozoa can still prove ineffective, in particular if only few sperm cells are present or if swabs contain sperm from more than one individual leading to complex low level DNA mixtures. A means to avoid such mixtures consists in the analysis of single micromanipulated sperm cells. However, the quantity of DNA from single sperm cells is not sufficient for conventional STR analysis. Here, we describe a simple method for micromanipulating individual sperm cells from intimate swabs and show that whole genome amplification can generate sufficient amounts of DNA from single cells for subsequent DNA profiling. We recovered over 80% of alleles of haploid autosomal STR profiles from the majority of individual sperm cells. Furthermore, we demonstrate that in mixtures of sperm from two contributors, Y-STR and X-STR profiles of individual sperm cells can be used to sort the haploid autosomal profiles to develop the diploid consensus STR profiles of the individual donors. Finally, by analysing single sperm cells from mock sexual assault swabs with one or two sperm donors, we showed that our protocols enabled the identification of the unknown male contributors.
Polymerase Chain Reaction
(2021)
DNA Sequencing
(2021)