Refine
Departments, institutes and facilities
Document Type
- Article (12)
- Part of a Book (1)
Language
- English (13)
Keywords
- Inborn error of metabolism (3)
- Ketone body (3)
- Metabolic acidosis (3)
- Hyperammonemia (2)
- Ketolysis (2)
- Metabolic decompensation (2)
- Metabolicdecompensation (2)
- Organic aciduria (2)
- ACAT1 (1)
- Beta-ketothiolase (1)
Background: 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency (HMGCLD) is an autosomal recessive disorder of ketogenesis and leucine degradation due to mutations in HMGCL.
Method: We performed a systematic literature search to identify all published cases. Two hundred eleven patients of whom relevant clinical data were available were included in this analysis. Clinical course, biochemical findings and mutation data are highlighted and discussed. An overview on all published HMGCL variants is provided.
Results: More than 95% of patients presented with acute metabolic decompensation. Most patients manifested within the first year of life, 42.4% already neonatally. Very few individuals remained asymptomatic. The neurologic long-term outcome was favorable with 62.6% of patients showing normal development.
Conclusion: This comprehensive data analysis provides a systematic overview on all published cases with HMGCLD including a list of all known HMGCL mutations.
Isolated methylmalonic acidaemia (MMA) and propionic acidaemia (PA) are rare inherited metabolic diseases. Six years ago, a detailed evaluation of the available evidence on diagnosis and management of these disorders has been published for the first time. The article received considerable attention, illustrating the importance of an expert panel to evaluate and compile recommendations to guide rare disease patient care. Since that time, a growing body of evidence on transplant outcomes in MMA and PA patients and use of precursor free amino acid mixtures allows for updates of the guidelines. In this article, we aim to incorporate this newly published knowledge and provide a revised version of the guidelines. The analysis was performed by a panel of multidisciplinary health care experts, who followed an updated guideline development methodology (GRADE). Hence, the full body of evidence up until autumn 2019 was re‐evaluated, analysed and graded. As a result, 21 updated recommendations were compiled in a more concise paper with a focus on the existing evidence to enable well‐informed decisions in the context of MMA and PA patient care.
BACKGROUND
Propionic acidemia is an inherited disorder caused by deficiency of propionyl-CoA carboxylase. Although it is one of the most frequent organic acidurias, information on the outcome of affected individuals is still limited.
STUDY DESIGN/METHODS
Clinical and outcome data of 55 patients with propionic acidemia from 16 European metabolic centers were evaluated retrospectively. 35 patients were diagnosed by selective metabolic screening while 20 patients were identified by newborn screening. Endocrine parameters and bone age were evaluated. In addition, IQ testing was performed and the patients' and their families' quality of life was assessed.
RESULTS
The vast majority of patients (>85%) presented with metabolic decompensation in the neonatal period. Asymptomatic individuals were the exception. About three quarters of the study population was mentally retarded, median IQ was 55. Apart from neurologic symptoms, complications comprised hematologic abnormalities, cardiac diseases, feeding problems and impaired growth. Most patients considered their quality of life high. However, according to the parents' point of view psychic problems were four times more common in propionic acidemia patients than in healthy controls.
CONCLUSION
Our data show that the outcome of propionic acidemia is still unfavourable, in spite of improved clinical management. Many patients develop long-term complications affecting different organ systems. Impairment of neurocognitive development is of special concern. Nevertheless, self-assessment of quality of life of the patients and their parents yielded rather positive results.
Methylmalonic and propionic acidemia (MMA/PA) are inborn errors of metabolism characterized by accumulation of propionic acid and/or methylmalonic acid due to deficiency of methylmalonyl-CoA mutase (MUT) or propionyl-CoA carboxylase (PCC). MMA has an estimated incidence of ~ 1: 50,000 and PA of ~ 1:100'000 -150,000. Patients present either shortly after birth with acute deterioration, metabolic acidosis and hyperammonemia or later at any age with a more heterogeneous clinical picture, leading to early death or to severe neurological handicap in many survivors. Mental outcome tends to be worse in PA and late complications include chronic kidney disease almost exclusively in MMA and cardiomyopathy mainly in PA. Except for vitamin B12 responsive forms of MMA the outcome remains poor despite the existence of apparently effective therapy with a low protein diet and carnitine. This may be related to under recognition and delayed diagnosis due to nonspecific clinical presentation and insufficient awareness of health care professionals because of disease rarity.
BACKGROUND
Metabolic control and dietary management of patients with phenylketonuria (PKU) are based on single blood samples obtained at variable intervals. Sampling conditions are often not well-specified and intermittent variation of phenylalanine concentrations between two measurements remains unknown. We determined phenylalanine and tyrosine concentrations in blood over 24 hours. Additionally, the impact of food intake and physical exercise on phenylalanine and tyrosine concentrations was examined. Subcutaneous microdialysis was evaluated as a tool for monitoring phenylalanine and tyrosine concentrations in PKU patients.
METHODS
Phenylalanine and tyrosine concentrations of eight adult patients with PKU were determined at 60 minute intervals in serum, dried blood and subcutaneous microdialysate and additionally every 30 minutes postprandially in subcutaneous microdialysate. During the study period of 24 hours individually tailored meals with defined phenylalanine and tyrosine contents were served at fixed times and 20 min bicycle-ergometry was performed.
RESULTS
Serum phenylalanine concentrations showed only minor variations while tyrosine concentrations varied significantly more over the 24-hour period. Food intake within the patients' individual diet had no consistent effect on the mean phenylalanine concentration but the tyrosine concentration increased up to 300% individually. Mean phenylalanine concentration remained stable after short-term bicycle-exercise whereas mean tyrosine concentration declined significantly. Phenylalanine and tyrosine concentrations in dried blood were significantly lower than serum concentrations. No close correlation has been found between serum and microdialysis fluid for phenylalanine and tyrosine concentrations.
CONCLUSIONS
Slight diurnal variation of phenylalanine concentrations in serum implicates that a single blood sample does reliably reflect the metabolic control in this group of adult patients. Phenylalanine concentrations determined by subcutaneous microdialysis do not correlate with the patients' phenylalanine concentrations in serum/blood.
Ornithine transcarbamylase (OTC) deficiency is the most common urea cycle defect. The clinical presentation in female manifesting carriers varies both in onset and severity. We report on a female with insulin dependent diabetes mellitus and recurrent episodes of hyperammonemia. Since OTC activity measured in a liver biopsy sample was within normal limits, OTC deficiency was initially excluded from the differential diagnoses of hyperammonemia. Due to moderately elevated homocitrulline excretion, hyperornithinemia-hyperammonemia-homocitrullinuria-syndrome was suggested, but further assays in fibroblasts showed normal ornithine utilization. Later, when mutation analysis of the OTC gene became available, a known pathogenic missense mutation (c.533C>T) in exon 5 leading to an exchange of threonine-178 by methionine (p.Thr178Met) was detected. Skewed X-inactivation was demonstrated in leukocyte DNA. In the further clinical course the girl developed marked obesity. By initiating physical activities twice a week, therapeutic control of both diabetes and OTC deficiency improved, but obesity persisted. In conclusion, our case confirms that normal hepatic OTC enzyme activity measured in a single liver biopsy sample does not exclude a clinical relevant mosaic of OTC deficiency because of skewed X-inactivation. Mutation analysis of the OTC gene in whole blood may be a simple way to establish the diagnosis of OTC deficiency. The joint occurrence of OTC deficiency and diabetes in a patient has not been reported before.
Fabry disease (FD) is an X‐linked lysosomal storage disorder. Deficiency of the lysosomal enzyme alpha‐galactosidase (GLA) leads to accumulation of potentially toxic globotriaosylceramide (Gb3) on a multisystem level. Cardiac and cerebrovascular abnormalities as well as progressive renal failure are severe, life‐threatening long‐term complications. The complete pathophysiology of chronic kidney disease (CKD) in FD and the role of tubular involvement for its progression are unclear.
We established human renal tubular epithelial cell lines from the urine of male FD patients and male controls. The renal tubular system is rich in mitochondria and involved in transport processes at high energy costs. Our studies revealed fragmented mitochondria with disrupted cristae structure in FD patient cells. Oxidative stress levels were elevated and oxidative phosphorylation was up‐regulated in FD pointing at enhanced energetic needs. Mitochondrial homeostasis and energy metabolism revealed major changes as evidenced by differences in mitochondrial number, energy production and fuel consumption. The changes were accompanied by activation of the autophagy machinery in FD. Sirtuin1, an important sensor of (renal) metabolic stress and modifier of different defense pathways, was highly expressed in FD.
Our data show that lysosomal FD impairs mitochondrial function and results in severe disturbance of mitochondrial energy metabolism in renal cells. This insight on a tissue‐specific level points to new therapeutic targets which might enhance treatment efficacy.
2-methylacetoacetyl-coenzyme A thiolase (beta-ketothiolase) deficiency: one disease - two pathways
(2020)
Background: 2-methylacetoacetyl-coenzyme A thiolase deficiency (MATD; deficiency of mitochondrial acetoacetyl-coenzyme A thiolase T2/ “beta-ketothiolase”) is an autosomal recessive disorder of ketone body utilization and isoleucine degradation due to mutations in ACAT1.
Methods: We performed a systematic literature search for all available clinical descriptions of patients with MATD. Two hundred forty-four patients were identified and included in this analysis. Clinical course and biochemical data are presented and discussed.
Results: For 89.6% of patients at least one acute metabolic decompensation was reported. Age at first symptoms ranged from 2 days to 8 years (median 12 months). More than 82% of patients presented in the first 2 years of life, while manifestation in the neonatal period was the exception (3.4%). 77.0% (157 of 204 patients) of patients showed normal psychomotor development without neurologic abnormalities. Conclusion: This comprehensive data analysis provides a systematic overview on all cases with MATD identified in the literature. It demonstrates that MATD is a rather benign disorder with often favourable outcome, when compared with many other organic acidurias.