Refine
H-BRS Bibliography
- yes (3)
Departments, institutes and facilities
Document Type
- Article (1)
- Conference Object (1)
- Working Paper (1)
Has Fulltext
- yes (3)
Keywords
- Ghanaian health sector (1)
- LSTM (1)
- SARIMA (1)
- West Africa (1)
- load forecasting (1)
- neural network (1)
Intention: Within the research project EnerSHelF (Energy-Self-Sufficiency for Health Facilities in Ghana), i. a. energy-meteorological and load-related measurement data are collected, for which an overview of the availability is to be presented on a poster.
Context: In Ghana, the total electricity consumed has almost doubled between 2008 and 2018 according to the Energy Commission of Ghana. This goes along with an unstable power grid, resulting in power outages whenever electricity consumption peaks. The blackouts called "dumsor" in Ghana, pose a severe burden to the healthcare sector. Innovative solutions are needed to reduce greenhouse gas emissions and improve energy and health access.
Ghana suffers from frequent power outages, which can be compensated by off-grid energy solutions. Photovoltaic-hybrid systems become more and more important for rural electrification due to their potential to offer a clean and cost-effective energy supply. However, uncertainties related to the prediction of electrical loads and solar irradiance result in inefficient system control and can lead to an unstable electricity supply, which is vital for the high reliability required for applications within the health sector. Model predictive control (MPC) algorithms present a viable option to tackle those uncertainties compared to rule-based methods, but strongly rely on the quality of the forecasts. This study tests and evaluates (a) a seasonal autoregressive integrated moving average (SARIMA) algorithm, (b) an incremental linear regression (ILR) algorithm, (c) a long short-term memory (LSTM) model, and (d) a customized statistical approach for electrical load forecasting on real load data of a Ghanaian health facility, considering initially limited knowledge of load and pattern changes through the implementation of incremental learning. The correlation of the electrical load with exogenous variables was determined to map out possible enhancements within the algorithms. Results show that all algorithms show high accuracies with a median normalized root mean square error (nRMSE) <0.1 and differing robustness towards load-shifting events, gradients, and noise. While the SARIMA algorithm and the linear regression model show extreme error outliers of nRMSE >1, methods via the LSTM model and the customized statistical approaches perform better with a median nRMSE of 0.061 and stable error distribution with a maximum nRMSE of <0.255. The conclusion of this study is a favoring towards the LSTM model and the statistical approach, with regard to MPC applications within photovoltaic-hybrid system solutions in the Ghanaian health sector.
In diesem Paper wird ein Modell eines Photovoltaik(PV)-Diesel-Hybrid-Systems aufgebaut. Dieses System besitzt neben einer PV-Anlage einen Batteriespeicher und ist an das öffentliche Stromnetz angeschlossen. Bei einem Ausfall aller drei Energiequellen stellt ein Dieselgenerator die Stromversorgung sicher. Mit Hilfe des erstellten Modells wird der Einfluss der unterschiedlichen Jahreszeiten und Wetterbedingungen auf den PV-Ertrag und das gesamte System im Zeitraum von Februar 2016 bis Februar 2017 untersucht. Die Messdaten dafür stammen von einem Krankenhaus in Akwatia, Ghana. Das Krankenhaus besitzt bereits eine PV-Anlage und einen Dieselgenerator als Backup.
Ein weiterer Aspekt der Untersuchung ist der Einfluss der Stromausfälle, die in dieser Region häufig vorkommen, auf den Einsatz des Generators.
Resultat der Untersuchung ist die Relevanz saisonaler und infrastruktureller Einflüsse auf die Betriebsweise des Systems. Mit Hilfe des erstellten Modells wurde analysiert, dass besonders während der Regenzeit im August die PV-Leistung sinkt und folglich viel Energie durch das öffentliche Stromnetz und den Generator bereitgestellt werden muss. Ein weiterer signifikanter Einbruch im PV-Ertrag ist zur Zeit des Harmattans im Januar zu verzeichnen.