Refine
Document Type
- Article (11)
- Conference Object (1)
Keywords
- Cysteine proteases (2)
- cysteine proteases (2)
- human cathepsins (2)
- nitrile inhibitors (2)
- 3D activity landscapes (1)
- Active site mapping (1)
- Activity-based probes (1)
- C-19 steroid (1)
- Cathepsin B (1)
- Cathepsin S (1)
Coumarin as a structural component of substrates and probes for serine and cysteine proteases
(2020)
Nitrile-type inhibitors are known to interact with cysteine proteases in a covalent-reversible manner. The chemotype of 3-cyano-3-aza-β-amino acid derivatives was designed in which the N-cyano group is centrally arranged in the molecule to allow for interactions with the nonprimed and primed binding regions of the target enzymes. These compounds were evaluated as inhibitors of the human cysteine cathepsins K, S, B, and L. They exhibited slow-binding behavior and were found to be exceptionally potent, in particular toward cathepsin K, with second-order rate constants up to 52 900 × 103 M–1 s–1.
The complex nature of multifactorial diseases, such as Morbus Alzheimer, has produced a strong need to design multitarget-directed ligands to address the involved complementary pathways. We performed a purposive structural modification of a tetratarget small-molecule, that is contilisant, and generated a combinatorial library of 28 substituted chromen-4-ones. The compounds comprise a basic moiety which is linker-connected to the 6-position of the heterocyclic chromenone core. The syntheses were accomplished by Mitsunobu- or Williamson-type ether formations. The resulting library members were evaluated at a panel of seven human enzymes, all of which being involved in the pathophysiology of neurodegeneration. A concomitant inhibition of human acetylcholinesterase and human monoamine oxidase B, with IC50 values of 5.58 and 7.20 μM, respectively, was achieved with the dual-target 6-(4-(piperidin-1-yl)butoxy)-4H-chromen-4-one (7).