Refine
H-BRS Bibliography
- yes (9)
Departments, institutes and facilities
Document Type
- Master's Thesis (6)
- Bachelor Thesis (1)
- Doctoral Thesis (1)
- Report (1)
Keywords
In the field of domestic service robots, recovery from faults is crucial to promote user acceptance. In this context, this work focuses on some specific faults which arise from the interaction of a robot with its real world environment. Even a well-modelled robot may fail to perform its tasks successfully due to external faults which occur because of an infinite number of unforeseeable and unmodelled situations. Through investigating the most frequent failures in typical scenarios which have been observed in real-world demonstrations and competitions using the autonomous service robots Care-O-Bot III and youBot, we identified four different fault classes caused by disturbances, imperfect perception, inadequate planning operator or chaining of action sequences. This thesis then presents two approaches to handle external faults caused by insufficient knowledge about the preconditions of the planning operator. The first approach presents reasoning on detected external faults using knowledge about naive physics. The naive physics knowledge is represented by the physical properties of objects which are formalized in a logical framework. The proposed approach applies a qualitative version of physical laws to these properties in order to reason. By interpreting the reasoning results the robot identifies the information about the situations which can cause the fault. Applying this approach to simple manipulation tasks like picking and placing objects show that naive physics holds great possibilities for reasoning on unknown external faults in robotics. The second approach includes missing knowledge about the execution of an action through learning by experimentation. Firstly, it investigates such representation of execution specific knowledge that can be learned for one particular situation and reused for situations which deviate from the original. The combination of symbolic and geometric models allows us to represent action execution knowledge effectively. This representation is called action execution model (AEM) here. The approach provides a learning strategy which uses a physical simulation for generating the training data to learn both symbolic and geometric aspects of the model. The experimental analysis, performed on two physical robots, shows that AEM can reliably describe execution specific knowledge and thereby serving as a potential model for avoiding the occurrence of external faults.
This project focuses on object detection in dense volume data. There are several types of dense volume data, namely Computed Tomography (CT) scan, Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI). This work focuses on CT scans. CT scans are not limited to the medical domain; they are also used in industries. CT scans are used in airport baggage screening, assembly lines, and the object detection systems in these places should be able to detect objects fast. One of the ways to address the issue of computational complexity and make the object detection systems fast is to use low-resolution images. Low-resolution CT scanning is fast. The entire process of scanning and detection can be made faster by using low-resolution images. Even in the medical domain, to reduce the rad iation dose, the exposure time of the patient should be reduced. The exposure time of patients could be reduced by allowing low-resolution CT scans. Hence it is essential to find out which object detection model has better accuracy as well as speed at low-resolution CT scans. However, the existing approaches did not provide details about how the model would perform when the resolution of CT scans is varied. Hence in this project, the goal is to analyze the impact of varying resolution of CT scans on both the speed and accuracy of the model. Three object detection models, namely RetinaNet, YOLOv3, and YOLOv5, were trained at various resolutions. Among the three models, it was found that YOLOv5 has the best mAP and f1 score at multiple resolutions on the DeepLesion dataset. RetinaNet model h as the least inference time on the DeepLesion dataset. From the experiments, it could be asserted that sacrificing mean average precision (mAP) to improve inference time by reducing resolution is feasible.
Effective Neighborhood Feature Exploitation in Graph CNNs for Point Cloud Object-Part Segmentation
(2022)
Part segmentation is the task of semantic segmentation applied on objects and carries a wide range of applications from robotic manipulation to medical imaging. This work deals with the problem of part segmentation on raw, unordered point clouds of 3D objects. While pioneering works on deep learning for point clouds typically ignore taking advantage of local geometric structure around individual points, the subsequent methods proposed to extract features by exploiting local geometry have not yielded significant improvements either. In order to investigate further, a graph convolutional network (GCN) is used in this work in an attempt to increase the effectiveness of such neighborhood feature exploitation approaches. Most of the previous works also focus only on segmenting complete point cloud data. Considering the impracticality of such approaches, taking into consideration the real world scenarios where complete point clouds are scarcely available, this work proposes approaches to deal with partial point cloud segmentation.
In the attempt to better capture neighborhood features, this work proposes a novel method to learn regional part descriptors which guide and refine the segmentation predictions. The proposed approach helps the network achieve state-of-the-art performance of 86.4% mIoU on the ShapeNetPart dataset for methods which do not use any preprocessing techniques or voting strategies. In order to better deal with partial point clouds, this work also proposes new strategies to train and test on partial data. While achieving significant improvements compared to the baseline performance, the problem of partial point cloud segmentation is also viewed through an alternate lens of semantic shape completion.
Semantic shape completion networks not only help deal with partial point cloud segmentation but also enrich the information captured by the system by predicting complete point clouds with corresponding semantic labels for each point. To this end, a new network architecture for semantic shape completion is also proposed based on point completion network (PCN) which takes advantage of a graph convolution based hierarchical decoder for completion as well as segmentation. In addition to predicting complete point clouds, results indicate that the network is capable of reaching within a margin of 5% to the mIoU performance of dedicated segmentation networks for partial point cloud segmentation.
In der vorliegenden Arbeit wird ein Verfahren zur Segmentierung von Außenszenen und Terrain-Klassifkation entwickelt. Dazu werden 360 Grad-Laserscanner-Aufnahmen von Straßen, Gebäudefassaden und Waldwegen aufgenommen. Von diesen Aufnahmen werden verschiedene visuelle Repräsentationen in 2D erstellt. Dazu werden die Distanzinformationen und Winkelübergänge der Polarkoordinaten, die Remissionswerte und der Normalenvektor eingesetzt. Die Berechnung des Normalenvektors wird über ein modernes Verfahren mit einerniedrigen Laufzeit durchgeführt. Anschließend werden Oberflächeneigenschaften innerhalb einer Punktwolke analysiert und vier Klassen unterschieden: Untergrund, Vegetation, Hindernis und Himmel. Die Segmentierung und Klassifkation geschieht in einem Schritt. Dazuwird die Varianz auf den N ormalen über eine Filtermaske berechnet und ein Deskriptor erstellt. Der Deskriptor beinhaltet die Normalenvektoren und die Normalenvarianz fürdie x-, y- und z-Achse. Die Ergebnisse werden als Überblendung auf dem Remissionsbilddargestellt. Die Auswertung wird über eigens erstellte Ground-Truth-Daten vorgenommen. Dazu wird das Remissionsbild genutzt und der Ground-Truth mit verschiedenen Farben eingezeichnet. Die Klassifkationsergebnisse sind in Precision-Recall-Diagrammen dargestellt.
This work extends the affordance-inspired robot control architecture introduced in the MACS project [35] and especially its approach to integrate symbolic planning systems given in [24] by providing methods to automated abstraction of affordances to high-level operators. It discusses how symbolic planning instances can be generated automatically based on these operators and introduces an instantiation method to execute the resulting plans. Preconditions and effects of agent behaviour are learned and represented in Gärdenfors conceptual spaces framework. Its notion of similarity is used to group behaviours to abstract operators based on the affordance-inspired, function-centred view on the environment. Ways on how the capabilities of conceptual spaces to map subsymbolic to symbolic representations to generate PDDL planning domains including affordance-based operators are discussed. During plan execution, affordance-based operators are instantiated by agent behaviour based on the situation directly before its execution. The current situation is compared to past ones and the behaviour that has been most successful in the past is applied. Execution failures can be repaired by action substitution. The concept of using contexts to dynamically change dimension salience as introduced by Gärdenfors is realized by using techniques from the field of feature selection. The approach is evaluated using a 3D simulation environment and implementations of several object manipulation behaviours.
Neural network based object detectors are able to automatize many difficult, tedious tasks. However, they are usually slow and/or require powerful hardware. One main reason is called Batch Normalization (BN) [1], which is an important method for building these detectors. Recent studies present a potential replacement called Self-normalizing Neural Network (SNN) [2], which at its core is a special activation function named Scaled Exponential Linear Unit (SELU). This replacement seems to have most of BNs benefits while requiring less computational power. Nonetheless, it is uncertain that SELU and neural network based detectors are compatible with one another. An evaluation of SELU incorporated networks would help clarify that uncertainty. Such evaluation is performed through series of tests on different neural networks. After the evaluation, it is concluded that, while indeed faster, SELU is still not as good as BN for building complex object detector networks.
In the eld of accessing and visualization mobile sensors and their recorded data, di erent approaches were realized. The OGC1 Sensor observation Service supplies a standard to access these information, stored on servers. To be able to access these servers, an interface must be developed and implemented. The result should be a con gurable development framework for web-based GIS clients supporting the OGC sensor observation services. In particular the framework should allow continuous position updates of mobile sensors. Visualization features like charts, bounding boxes of sensors and data series should be included.
The task of this thesis is to develop an OGC-compliant Sensor Observation Service (SOS) { a component of the SWE { for GPS related sensor data in this context. It should, in contrast to existing implementations, support full mobility of the sensors and be con gurable with respect to adding di erent kinds of sensors. In particular, mobile phones should be considered as sensors, which transmit their data to the SOS server through the transactional SOS interface.
Segmentierung von 3D-Daten
(2011)
Die vorliegende Arbeit wird im Rahmen eines Projektes des Fraunhofer Instituts IAIS erstellt. Hier geht es um die Entwicklung eines neuen 3D-Laserscanners. Basierend auf diesem 3D-Laserscanner soll eine Sicherheits-Anwendung realisiert werden. Für eine Softwarekomponente - die Segmentierung von 3D-Daten - wird der Stand der Forschung untersucht und es werden drei Segmentierungs-Verfahren ausgewählt und implementiert. Der RANSAC-Algorithmus wird zur Detektion von Ebenen eingesetzt. In dieser Arbeit wird er um ein Abbruchkriterium erweitert, welches die Gesamtlaufzeit bei der Segmentierung von mehreren Ebenen verringert.