Refine
H-BRS Bibliography
- yes (4)
Departments, institutes and facilities
Document Type
- Doctoral Thesis (4)
Has Fulltext
- no (4)
Keywords
- ABTS (1)
- Additiv (1)
- Antioxidans (1)
- Antioxidant capacity (1)
- Antioxidanz (1)
- Charakterisierung (1)
- Christmas trees (1)
- DPPH (1)
- Ernte (1)
- FRAP (1)
Lignin ist ein aromatisches Biopolymer, das in den Zellwänden von Pflanzen vorkommt. Es ist hauptsächlich aus drei sogenannten Monolignolen (p-Hydroxyphenyl (H), Guajakol (G) und Syringol (S)) aufgebaut, die über verschiedene Bindungen miteinander verknüpft sein können, und enthält eine Vielzahl an funktionellen Gruppen. Interessant für die Verwendung von Lignin sind dabei insbesondere die vielen phenolischen Hydroxygruppen, die als Ausgangsstoff bei der Synthese neuer Produkte dienen können, daneben aber auch für seine antioxidativen Eigenschaften verantwortlich sind. Da Struktur und Eigenschaften von vielen Faktoren wie Biomasse und Aufschlussprozess abhängen, ist eine detaillierte Charakterisierung der Lignine nötig, um Struktur-Eigenschafts-Beziehungen aufzuklären und so einen Schritt näher an eine mögliche stoffliche Nutzung zu kommen. Mit dieser Arbeit soll der Einfluss der Biomasse inklusive der verwendeten Partikelgröße sowie des Organosolv-Aufschlussprozesses auf die Monomerzusammensetzung, das Molekulargewicht und die Antioxidanz der isolierten Lignine untersucht werden.
Als Rohstoffe zur Ligningewinnung dienen die drei mehrjährigen lignocellulosereichen Low-Input-Pflanzen Miscanthus x giganteus, Silphium perfoliatum und Paulownia tomentosa, die momentan hauptsächlich zur Energiegewinnung genutzt werden. Im Rahmen der Bioökonomiestrategie der Europäischen Union soll der Schwerpunkt zukünftiger Bioraffinerien jedoch auf eine ganzheitliche Nutzung von Biomassen gelegt und so auch die stoffliche Nutzung fokussiert werden. Zusätzlich zu diesen drei Pflanzen werden auch Organosolv-Lignine aus den in der Literatur bereits gut beschriebenen Biomassen Weizenstroh und Buchenholz isoliert, und zwei Nadelholz-Kraft-Lignine als Vergleich herangezogen. Die Ergebnisse zeigen, dass die Art der Biomasse hauptsächlich die Monomerzusammensetzung beeinflusst: Gräser bestehen aus allen drei Monolignolen, Laubhölzer mehrheitlich aus S- und G-Einheiten, während Nadelhölzer nur aus G-Einheiten aufgebaut sind. Die Holzlignine besitzen zudem höhere Molekulargewichte sowie bessere antioxidative Eigenschaften als die Gras- und Krautlignine. Mit der feineren Vermahlung der Biomasse kann die Monomerzusammensetzung beeinflusst werden: der Einsatz kleinerer Partikelgrößen führt zu Ligninen mit einem höheren Gehalt an H-Einheiten, sowohl für Miscanthus als auch für Paulownia. Außerdem kann bei Paulownia die Ausbeute gesteigert und eine Zunahme des Molekulargewichtes beobachtet werden, wenn die kleinste Siebfraktion für den Organosolv-Aufschluss verwendet wird. Einen größeren Einfluss als der Mahlgrad der Biomasse haben die Autohydrolyse sowie der Organosolv-Aufschlussprozess selbst. Die Monomerzusammensetzung ändert sich aufgrund derselben Biomasse zwar kaum, die Bindungstypen zwischen den Monolignolen dagegen schon. Mit höherer Prozessstärke (Zeit, Temperatur, Ethanol-Konzentration) werden Etherbindungen gespalten, was den Anteil an phenolischen Hydroxygruppen und somit die Antioxidanz erhöht. Neben dieser Depolymerisation werden partiell auch Rekondensationsreaktionen beobachtet.
Die erzielten Ergebnisse liefern einen Beitrag zum Verständnis des Zusammenhangs zwischen Ligninquelle und -gewinnung mit der daraus resultierenden Ligninstruktur und Antioxidanz und bieten damit eine Grundlage für den Wandel von der energetischen hin zu einer nachhaltigen stofflichen Nutzung dieses nachwachsenden Biopolymers. Gerade über die Wahl der Aufschlussparameter können Struktur und Antioxidanz gezielt beeinflusst werden, was in zukünftigen Studien weiter fokussiert werden sollte.
Miscanthus bietet als nachwachsende Industrie- und Energiepflanze zahlreiche Vorteile, die neben den direkten landwirtschaftlichen Anwendungen wie Verbrennung und Tiereinstreu auch eine stoffliche Nutzung im chemischen Bereich zulassen. Als C4-Pflanze mit gesteigerter Photosynthese-Aktivität weist Miscanthus zudem eine hohe CO2-Fixierrate auf. Aufgrund des geringen Kultivierungsaufwandes sowie der hohen Erträge bietet sich Miscanthus als ausgesprochen attraktiver Rohstoff für die Produktion erneuerbarer Kraftstoffe und Chemikalien an, welche mittels thermo-chemischer Umwandlung gewonnen werden.
Bedingt durch die zunehmende Rohstoffknappheit rückt die Suche nach alternativen, nachhaltigen Rohstoffen immer mehr in den Vordergrund. Im Hinblick auf effiziente chemische Verwertbarkeit bietet Lignin zahlreiche Vorteile für verschiedene Anwendungsbereiche, beispielsweise für biobasierte Polyurethanbeschichtungen, etwa zum Korrosionsschutz. Wesentliche Probleme bei der Verwendung von Lignin ergeben sich durch die Heterogenität dieses Naturstoffes sowie durch dessen geringe Polymerisations-Kompatibilität mit Polyolefinen; beide Faktoren beeinflussen u. a die mechanischen Eigenschaften entsprechender Lignin-basierter Polymere. Zudem hängt die konkrete Struktur und damit auch die physikalisch/chemischen Eigenschaften des Lignins stark von der jeweiligen Rohstoffquelle sowie dem Extraktionsverfahren ab.
Ziel dieser Arbeit war die Strukturaufklärung unmodifizierter und modifizierter Kraft-Lignine (KL) und die Untersuchung der Reaktivität aromatischer wie aliphatischer Hydroxygruppen in Abhängigkeit vom pH-Wert. Hierzu wurden unmodifizierte KL aus Schwarzlauge extrahiert und nachfolgend zunächst einer Soxhlet-Extraktion unterzogen, um in Methyltetrahydrofuran lösliche Lignin-Bestandteile – vornehmlich mit aromatischem Charakter – zu gewinnen und so eine verbesserte Löslichkeit auch im bei der nachfolgenden Polyurethansynthese als Lösemittel verwendeten THF zu gewährleisten. Überdies wurden die extrahierten KL via Demethylierung von Methoxygruppen chemisch modifiziert. Zudem wurde mittels nasschemischer Methoden sowie mit differentieller UV/VIS-Spektroskopie die Anzahl an für die Polymerisation erforderliche Hydroxygruppen quantifiziert. Im Anschluss erfolgte, unter besonderer Berücksichtigung ökologischer und ökonomischer Nachhaltigkeitsaspekte, die Synthese Lignin-basierter und funktionalisierter Polyurethanbeschichtungen. Die Oberflächenfunktionalisierung gestattete die Verbesserung der Oberflächenhomogenität sowie - via blend formation - das Einbetten von TPM-Farbstoffen in die Coatings. Hinsichtlich des Einflusses des bei der Extraktion gewählten pH-Wertes (pH = 2 - 5) auf das Verhalten der so gewonnenen KL wurde eine Veränderung sowohl der Struktur der Lignine als auch deren thermischer Stabilität beobachtet. Zudem wurde nachgewiesen, dass mit steigendem pH-Wert die Funktionalität/Reaktivität der aromatischen wie aliphatischen Hydroxygruppen im Lignin zunimmt. Aus unmodifiziertem KL wurden erfolgreich homogene Lignin-basierte Polyurethan-Coatings (LPU-Coatings) synthetisiert; diese LPU-Coatings zeigten bei Verwendung von bei höheren pH-Werten extrahierten KL homogenere, hydrophobe Oberflächenbeschaffenheit sowie gute thermische Stabilität. Zusätzliche Modifizierung der KL durch Demethylierung führte wegen der gesteigerten Anzahl freier Hydroxygruppen zu moderater Reaktivitätssteigerung und damit zu weiterer Verbesserung der Oberflächeneigenschaften hinsichtlich einer homogenen Oberflächenstruktur und -brillanz. Im Hinblick auf den Aspekt der Nachhaltigkeit wurden durch Syntheseoptimierung - bestehend aus Einstellung der Rohstoff-Korngröße, Ultraschallbehandlung und Verwendung des kommerziellen trifunktionellen Polyetherpolyols Lupranol® 3300 in Kombination mit Desmodur® L75 - die Löslichkeit von Lignin im Polyol sowie die thermische Stabilität der LPU-Coatings erhöht. Im Zuge der Syntheseoptimierungen konnte durch verkürzte Trocknungszeiten Energieeinsparung erzielt werden; zudem ließen sich dabei die eingesetzten Mengen kommerziell erhältlicher Chemikalien verringern; beide Einsparungen führten zu Kostenreduktion. Zugleich ließ sich so nicht nur der KL-Anteil im Polymer-Coating erhöhen: Durch eine optimierte wirtschaftliche Einstufensynthese ließ sich die Umsetzung dieser Vorgehensweise auch im Rahmen industrieller Anwendungen vereinfachen. Das Einbetten ausgewählter TPM-Farbstoffe (Kristallviolett und Brilliantgrün) in die LPU-Coatings durch blend formation führte nachweislich zu antimikrobieller Wirkung der Oberflächenbeschichtung, ohne dass die Oberflächenbeschaffenheit an Homogenität verlor. Die im Rahmen dieser Arbeit synthetisierten LPU-Coatings könnten zukünftig als Korrosionsschutz- und antimikrobielle-Beschichtungen ihre Anwendung finden, z. B. in der Landwirtschaft und im Bausektor.
Die im Rahmen der vorliegenden Arbeit gewonnen Erkenntnisse liefern einen Beitrag zur strukturellen Aufklärung des komplexen Biopolymers Lignin. Darüber hinaus stellen die Untersuchungen und Ergebnisse eine Grundlage für eine nachhaltige Herstellung von Lignin-basierten Polymerbeschichtungen dar, die in Zukunft immer mehr an Bedeutung gewinnen werden.
Typically, plastic packaging materials are produced using additives, like e.g. stabilisers, to introduce specific desired properties into the material or, in case of stabilisers, to prolong the shelf life of such packaging materials. However, those stabilisers are typically fossil-based and can pose risks to both environmental and human health. Therefore, the present study presents more sustainable alternatives based on regional renewable resources which show the relevant antioxidant, antimicrobial and UV absorbing properties to successfully serve as a plastic stabiliser. In the study, all plants are extracted and characterised with regard to not only antioxidant, antimicrobial and UV absorbing effects, but also with regard to additional relevant information like chemical constituents, molar mass distribution, absorbance in the visible range et cetera. The extraction process is furthermore optimised and, where applicable, reasonable opportunities for waste valorisation are explored and analysed. Furthermore, interactions between analysed plant extracts are described and model films based on Poly-Lactic Acid are prepared, incorporating analysed plant extracts. Based on those model films, formulation tests and migration analysis according to EU legislation is conducted.
The well-known aromatic and medicinal plant thyme (Thymus vulgaris L.) includes phenolic terpenoids like thymol and carvacrol which have strong antioxidant, antimicrobial and UV absorbing effects. Analyses show that those effects can be used in both lipophilic and hydrophilic surroundings, that the variant Varico 3 is a more potent cultivar than other analysed thyme variants, and that a passive extraction setup can be used for extract preparation while distillation of the Essential Oils can be a more efficient approach.
Macromolecular antioxidant polyphenols, particularly proanthocyanidins, have been found in the seed coats of the European horse chestnut (Aesculus hippocastanum L.) which are regularly discarded in phytopharmaceutical industry. In this study, such effects and compounds have been reported for the first time while a valorisation of waste materials has been analysed successfully. Furthermore, a passive extraction setup for waste materials and whole seeds has been developed. In extracts of snowdrops, precisely Galanthus elwesii HOOK.F., high concentrations of tocopherol have been found which promote a particularly high antioxidant capacity in lipophilic surroundings. Different coniferous woods (Abies div., Picea div.) which are in use as Christmas trees are extracted after separating the biomass in leafs and wood parts before being analysed regarding extraction optimisation and drought resistance of active substances. Antioxidant and UV absorbing proanthocyanidins are found even in dried biomasses, allowing the circular use of already used Christmas trees as bio-based stabilisers and the production of sustainable paper as a byproduct.