Institut für Sicherheitsforschung (ISF)
Refine
Departments, institutes and facilities
- Institut für Sicherheitsforschung (ISF) (101)
- Fachbereich Angewandte Naturwissenschaften (58)
- Fachbereich Informatik (39)
- Institut für Detektionstechnologien (IDT) (10)
- Institute of Visual Computing (IVC) (7)
- Institut für funktionale Gen-Analytik (IFGA) (6)
- Fachbereich Ingenieurwissenschaften und Kommunikation (5)
- Graduierteninstitut (4)
- Institut für Technik, Ressourcenschonung und Energieeffizienz (TREE) (3)
- Institut für Cyber Security & Privacy (ICSP) (2)
Document Type
- Article (46)
- Conference Object (36)
- Report (6)
- Doctoral Thesis (4)
- Patent (3)
- Contribution to a Periodical (2)
- Part of a Book (1)
- Conference Proceedings (1)
- Research Data (1)
- Master's Thesis (1)
Year of publication
Keywords
- Chemometrics (4)
- DNA typing (3)
- Raman spectroscopy (3)
- Classification (2)
- Cooperative Awareness Message (2)
- Discriminant analysis (2)
- Hyperspectral image (2)
- Intelligent Transport System (2)
- Principal Components Analysis (2)
- Privacy (2)
This thesis seeks to contribute to the standardization of characterization methods for Time-of-Flight (ToF) cameras, especially in the field of their suitability for facial biometric applications. Building on previous work, this work proposes methods to determine sharpness, resolution, distortion, influence of material remission and measurement angle on the measurement error.
The methods are tested on three ToF cameras and one active stereo camera. Key findings include the applicability of the ISO 12233:2023 slanted edge method for 3D camera sharpness and enhancements to the Böhler-star method for 3D resolution. The study presents a first-time comprehensive analysis of material remission and angle impacts on measurement errors.
The methods reliably characterize 3D camera suitability for biometrics, applicable to both ToF and active stereo cameras. Overall the 3D camera performance can be effectively summarized in 24 key metrics, providing robust evaluations for biometric applications.
In der vorliegenden Arbeit werden die nematischen Flüssigkristallgemische (E7 und E8) zum Zwecke der Gassensorik mit einer reaktiven, optisch aktiven Substanz dotiert. Die Dotierung verursacht die Ausbildung einer chiral-nematischen Phase, die einen eindimensionalen photonischen Kristall mit Reflexionsmaxima im sichtbaren Bereich des elektromagnetischen Spektrums erzeugt. Infolge einer chemischen Reaktion des Dotiermittels mit dem einem Analyten, ändert sich mit seiner chemischen Zusammensetzung auch dessen helical twisting power (HTP). Diese Änderung verursacht eine Verschiebung des reflektierten Wellenlängenbereichs, was als Änderung der farblichen Erscheinung mit dem bloßen Auge wahrgenommen werden kann. In dieser Arbeit wird das koaxiale Elektrospinnen verwendet, um Flüssigkristalle in Polymerfasern von wenigen Mikrometern Durchmesser einzukapseln. Der Vergleich zwischen eingekapseltem und nicht eingekapseltem dotierten Flüssigkristall wird mit einer dafür entwickelten Reaktionskammer UV/VIS-spektroskopisch durchgeführt. Die ablaufenden Reaktionen werden mittels FTIR-Spektroskopie untersucht. Die Fasern und die verwendeten Flüssigkristalle werden lichtmikroskopisch charakterisiert. Es werden zusätzlich Möglichkeiten untersucht die Wasserbeständigkeit der hergestellten Fasern zu verbessern, um ihre Eignung für künftige technische Anwendungen zu steigern. Hierzu wird das triaxiale Elektrospinnen verwendet, um die Fasern mit einer zusätzlichen wasserbeständigen Polymerhülle zu überziehen. Es wird zudem die Möglichkeit untersucht koaxial gesponnene Fasern nachträglich zu vernetzen, um so eine Wasserfestigkeit zu erzielen.
Explosives detection dog (EDD) teams are deployed at mass events such as concerts, annual general meetings of large listed companies or in air cargo security. However, outside of EU-regulated air cargo, there is no common quality standard for commercial EDD in Germany and many neighboring countries. While law enforcement agencies have access to experienced chemists and can conduct dog training with homemade explosives, small commercial security services do not have comparable capabilities and face additional legal hurdles. The DIN SPEC 77201 was developed within the project to fulfil the need for a generally accepted quality standard. A training workshop was developed and transferred from the academic sector to commercial partners in order to improve training opportunities with home-made explosives, providing new insights for training EDD teams with TATP, HMTD or training aids.
Biometric authentication plays a vital role in various everyday applications with increasing demands for reliability and security. However, the use of real biometric data for research raises privacy concerns and data scarcity issues. A promising approach using synthetic biometric data to address the resulting unbalanced representation and bias, as well as the limited availability of diverse datasets for the development and evaluation of biometric systems, has emerged. Methods for a parameterized generation of highly realistic synthetic data are emerging and the necessary quality metrics to prove that synthetic data can compare to real data are open research tasks. The generation of 3D synthetic face data using game engines’ capabilities of generating varied realistic virtual characters is explored as a possible alternative for generating synthetic face data while maintaining reproducibility and ground truth, as opposed to other creation methods. While synthetic data offer several benefits, including improved resilience against data privacy concerns, the limitations and challenges associated with their usage are addressed. Our work shows concurrent behavior in comparing semi-synthetic data as a digital representation of a real identity with their real datasets. Despite slight asymmetrical performance in comparison with a larger database of real samples, a promising performance in face data authentication is shown, which lays the foundation for further investigations with digital avatars and the creation and analysis of fully synthetic data. Future directions for improving synthetic biometric data generation and their impact on advancing biometrics research are discussed.
Sensoren können verschiedene Aufgaben erfüllen, wie beispielsweise die Optimierung von Prozessen, die Interaktion zwischen Geräten oder die Verbesserung der zivilen Sicherheit. [1–3] Ihr Bedarf für die Industrie oder den Alltag wächst seit Jahren stetig. Besonders mobile Gassensoren sind von großem Interesse. Jedoch ist ihre Anwendung meist durch ihre integrierte Batterie begrenzt. Gassensoren ohne oder mit einem nur sehr geringen Energieverbrauch stehen daher im Interesse bei neuen Anwendungsgebieten, beispielsweise im Brandschutz oder in der Textilindustrie. [4,5] Die Sensoren könnten zum Beispiel in die Textilien einer persönlichen Schutzausrüstung eingearbeitet werden und durch einen Farbumschlag die Anwesenheit eines Gases oder die Überschreitung des Grenzwertes toxischer Substanzen anzeigen.
Due to their user-friendliness and reliability, biometric systems have taken a central role in everyday digital identity management for all kinds of private, financial and governmental applications with increasing security requirements. A central security aspect of unsupervised biometric authentication systems is the presentation attack detection (PAD) mechanism, which defines the robustness to fake or altered biometric features. Artifacts like photos, artificial fingers, face masks and fake iris contact lenses are a general security threat for all biometric modalities. The Biometric Evaluation Center of the Institute of Safety and Security Research (ISF) at the University of Applied Sciences Bonn-Rhein-Sieg has specialized in the development of a near-infrared (NIR)-based contact-less detection technology that can distinguish between human skin and most artifact materials. This technology is highly adaptable and has already been successfully integrated into fingerprint scanners, face recognition devices and hand vein scanners. In this work, we introduce a cutting-edge, miniaturized near-infrared presentation attack detection (NIR-PAD) device. It includes an innovative signal processing chain and an integrated distance measurement feature to boost both reliability and resilience. We detail the device’s modular configuration and conceptual decisions, highlighting its suitability as a versatile platform for sensor fusion and seamless integration into future biometric systems. This paper elucidates the technological foundations and conceptual framework of the NIR-PAD reference platform, alongside an exploration of its potential applications and prospective enhancements.
In this work, the surface reactions of the homemade explosive triacetone triperoxide on tungsten oxide (WO3) sensor surfaces are studied to obtain detailed information about the chemical reactions taking place. Semiconductor gas sensors based on WO3 nanopowders are therefore produced and characterized by scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. To analyze the reaction mechanisms at the sensor surface, the sensor is monitored online under operation conditions using Raman spectroscopy, which allows to identify the temperature-dependent sensor reactions. By combining information from the Raman spectra with data on the changing resistivity of the underlying semiconductor, it is possible to establish a correlation between the adsorbed gas species and the physical properties of the WO3 layer. In the results, it is indicated that a Lewis acid–base reaction is the most likely mechanism for the increase in resistance observed at temperatures below 150 °C. In the results, at higher temperatures, the assumption of a radical mechanism that causes a decrease in resistance is supported.
The human gut microbiota harbors untapped potential for biotechnological applications. Within the phylum of Bacteroidota, Phocaeicola vulgatus stands out as a promising candidate for sustainable production of key platform chemicals like succinate. However, genetic engineering of Phocaeicola sp. remains challenging due to its intricate molecular landscape. This study lays the groundwork for manipulating the central carbon pathways in Phocaeicola vulgatus, offering insights into overcoming genetic hurdles for increased succinate yields.
A Fourier scatterometry setup is evaluated to recover the key parameters of optical phase gratings. Based on these parameters, systematic errors in the printing process of two-photon polymerization (TPP) gray-scale lithography three-dimensional printers can be compensated, namely tilt and curvature deviations. The proposed setup is significantly cheaper than a confocal microscope, which is usually used to determine calibration parameters for compensation of the TPP printing process. The grating parameters recovered this way are compared to those obtained with a confocal microscope. A clear correlation between confocal and scatterometric measurements is first shown for structures containing either tilt or curvature. The correlation is also shown for structures containing a mixture of tilt and curvature errors (squared Pearson coefficient r2 = 0.92). This compensation method is demonstrated on a TPP printer: a diffractive optical element printed with correction parameters obtained from Fourier scatterometry shows a significant reduction in noise as compared to the uncompensated system. This verifies the successful reduction of tilt and curvature errors. Further improvements of the method are proposed, which may enable the measurements to become more precise than confocal measurements in the future, since scatterometry is not affected by the diffraction limit.
Microorganisms not only contribute to the spoilage of food but can also cause illnesses through consumption. Consumer concerns and doubts about the shelf life of the products and the resulting enormous amounts of food waste have led to a demand for a rapid, robust, and non-destructive method for the detection of microorganisms, especially in the food sector. Therefore, a rapid and simple sampling method for the Raman- and infrared (IR)-microspectroscopic study of microorganisms associated with spoilage processes was developed. For subsequent evaluation pre-processing routines, as well as chemometric models for classification of spoilage microorganisms were developed. The microbiological samples are taken using a disinfectable sampling stamp and measured by microspectroscopy without the usual pre-treatments such as purification separation, washing, and centrifugation. The resulting complex multivariate data sets were pre-processed, reduced by principal component analysis, and classified by discriminant analysis. Classification of independent unlabeled test data showed that microorganisms could be classified at genus, species, and strain levels with an accuracy of 96.5 % (Raman) and 94.5 % (IR), respectively, despite large biological differences and novel sampling strategies. As bacteria are exposed to constantly changing conditions and their adaptation mechanisms may make them inaccessible to conventional measurement methods, the methods and models developed were investigated for their suitability for microorganisms exposed to stress. Compared to normal growth conditions, spectral changes in lipids, polysaccharides, nucleic acids, and proteins were observed in microorganisms exposed to stress. Models were developed to discriminate microorganisms, independent of the involvement of various stress factors and storage times. Classification of the investigated bacteria yielded accuracies of 97.6 % (Raman) and 96.6 % (IR), respectively, and a robust and meaningful model was developed to discriminate different microorganisms at the genus, species, and strain levels. The obtained results are very promising and show that the methods and models developed for the discrimination of microorganisms as well as the investigation of stress factors on microorganisms by means of Raman- and IR-microspectroscopy have the potential to be used, for example, in the food sector for the rapid determination of surface contamination.
The development of whole-genome amplification (WGA) techniques has opened up new avenues for genetic analysis and genome research, in particular by facilitating the genome-wide analysis of few or even single copies of genomic DNA, such as from single cells (prokaryotic or eukaryotic) or virions. Using WGA, the few copies of genomic DNA obtained from such entities are unspecifically amplified using PCR or PCR-related processes in order to obtain higher DNA quantities that can then be successfully analysed further.
P30 - Das Elektrospinnen von halbleitenden Zinndioxidfasern für die Detektion von Wasserstoff
(2022)
Das Ziel dieser Arbeit ist die Entwicklung von dünnen keramischen Fasern als halbleitendes Sensormaterial zum Nachweis von Wasserstoff, möglichst bei Zimmertemperatur. Die elektrische Leitfähigkeit halbleitender Metalloxide ändert sich durch die Einwirkung von oxidierenden und reduzierenden Gasen auf die Oberfläche des Metalloxids. Dieser Effekt kann zur Messung der Gaskonzentration genutzt werden. Die Reaktion von Zinn(IV)-oxid mit Wasserstoff basiert auf der Reduktion des Zinn(IV)-oxids zum Zinn, wobei die Elektronen des Zinn(IV)-oxids im metallischen Zinn verbleiben und dort im nicht gebundenen Zustand zu einer Leitfähigkeitserhöhung beitragen. Die Reaktion des Wasserstoffes kann sowohl mit den Sauerstoffatomen des Oxids als auch mit adsorbierten Sauerstoffatomen an der Oxidoberfläche stattfinden.[ 6] Da die Reaktionen an der Oberfläche des Oxids stattfinden, sollten Sensoren mit einer großen Oberfläche im Vergleich zu metalloxidischen Bulkmaterialien eine höhere Empfindlichkeit aufweisen. [3] Die Verwendung von Fasern anstelle von Dünn- oder Dickschichten führt dabei zu einer besseren Sensitivität gegenüber Gasen.
Forensic DNA profiles are established by multiplex PCR amplification of a set of highly variable short tandem repeat (STR) loci followed by capillary electrophoresis (CE) as a means to assign alleles to PCR products of differential length. Recently, CE analysis of STR amplicons has been supplemented by high-throughput next generation sequencing (NGS) techniques that are able to detect isoalleles bearing sequence polymorphisms and allow for an improved analysis of degraded DNA. Several such assays have been commercialised and validated for forensic applications. However, these systems are cost-effective only when applied to high numbers of samples. We report here an alternative, cost-efficient shallow-sequence output NGS assay called maSTR assay that, in conjunction with a dedicated bioinformatics pipeline called SNiPSTR, can be implemented with standard NGS instrumentation. In a back-to-back comparison with a CE-based, commercial forensic STR kit, we find that for samples with low DNA content, with mixed DNA from different individuals, or containing PCR inhibitors, the maSTR assay performs equally well, and with degraded DNA is superior to CE-based analysis. Thus, the maSTR assay is a simple, robust and cost-efficient NGS-based STR typing method applicable for human identification in forensic and biomedical contexts.
Robust Identification and Segmentation of the Outer Skin Layers in Volumetric Fingerprint Data
(2022)
Despite the long history of fingerprint biometrics and its use to authenticate individuals, there are still some unsolved challenges with fingerprint acquisition and presentation attack detection (PAD). Currently available commercial fingerprint capture devices struggle with non-ideal skin conditions, including soft skin in infants. They are also susceptible to presentation attacks, which limits their applicability in unsupervised scenarios such as border control. Optical coherence tomography (OCT) could be a promising solution to these problems. In this work, we propose a digital signal processing chain for segmenting two complementary fingerprints from the same OCT fingertip scan: One fingerprint is captured as usual from the epidermis (“outer fingerprint”), whereas the other is taken from inside the skin, at the junction between the epidermis and the underlying dermis (“inner fingerprint”). The resulting 3D fingerprints are then converted to a conventional 2D grayscale representation from which minutiae points can be extracted using existing methods. Our approach is device-independent and has been proven to work with two different time domain OCT scanners. Using efficient GPGPU computing, it took less than a second to process an entire gigabyte of OCT data. To validate the results, we captured OCT fingerprints of 130 individual fingers and compared them with conventional 2D fingerprints of the same fingers. We found that both the outer and inner OCT fingerprints were backward compatible with conventional 2D fingerprints, with the inner fingerprint generally being less damaged and, therefore, more reliable.
The following work presents algorithms for semi-automatic validation, feature extraction and ranking of time series measurements acquired from MOX gas sensors. Semi-automatic measurement validation is accomplished by extending established curve similarity algorithms with a slope-based signature calculation. Furthermore, a feature-based ranking metric is introduced. It allows for individual prioritization of each feature and can be used to find the best performing sensors regarding multiple research questions. Finally, the functionality of the algorithms, as well as the developed software suite, are demonstrated with an exemplary scenario, illustrating how to find the most power-efficient MOX gas sensor in a data set collected during an extensive screening consisting of 16,320 measurements, all taken with different sensors at various temperatures and analytes.
Kollaborative Industrieroboter werden für produzierende Unternehmen immer kosteneffizienter. Während diese Systeme für den menschlichen Mitarbeiter eine große Hilfe sein können, stellen sie gleichzeitig ein ernstes Gesundheitsrisiko dar, wenn die zwingend notwendigen Sicherheitsmaßnahmen nur unzureichend umgesetzt werden. Herkömmliche Sicherheitseinrichtungen wie Zäune oder Lichtvorhänge bieten einen guten Schutz, aber solch statische Schutzvorrichtungen sind in neuen, hochdynamischen Arbeitsszenarien problematisch.
Im Forschungsprojekt BeyondSPAI wurde ein Funktionsmuster eines Multisensorsystems zur Absicherung solcher dynamischer Arbeitsszenarien entworfen, implementiert und im Feld getestet. Kern des Systems ist eine robuste optische Materialklassifikation, die mit Hilfe eines intelligenten InGaAs-Kamerasystems Haut von anderen typischen Werkstückoberflächen (z.B. Holz, Metalle od. Kunststoffe) unterscheiden kann. Diese einzigartige Eigenschaft wird genutzt, um menschliche Mitarbeiter zuverlässig zu erkennen, so dass ein konventioneller Roboter in Folge als personenbewusster Cobot arbeiten kann.
Das System ist modular und kann leicht mit weiteren Sensoren verschiedenster Art erweitert werden. Es kann an verschiedene Marken von Industrierobotern angepasst werden und lässt sich schnell an bestehenden Robotersystemen integrieren. Die vier vom System bereitgestellten Sicherheitsausgänge können dazu verwendet werden - abhängig von der durchdrungenen Überwachungszone - entweder eine Warnung auszugeben, die Bewegung des Roboters auf eine sichere Geschwindigkeit zu verlangsamen, oder den Roboter sicher anzuhalten. Sobald alle Zonen wieder als „eindeutig frei von Personen“ identifiziert sind, kann der Roboter wieder beschleunigen, seine ursprüngliche Bewegung wiederaufnehmen und die Arbeit fortsetzen.
Modern PCR-based analytical techniques have reached sensitivity levels that allow for obtaining complete forensic DNA profiles from even tiny traces containing genomic DNA amounts as small as 125 pg. Yet these techniques have reached their limits when it comes to the analysis of traces such as fingerprints or single cells. One suggestion to overcome these limits has been the usage of whole genome amplification (WGA) methods. These methods aim at increasing the copy number of genomic DNA and by this means generate more template DNA for subsequent analyses. Their application in forensic contexts has so far remained mostly an academic exercise, and results have not shown significant improvements and even have raised additional analytical problems. Until very recently, based on these disappointments, the forensic application of WGA seems to have largely been abandoned. In the meantime, however, novel improved methods are pointing towards a perspective for WGA in specific forensic applications. This review article tries to summarize current knowledge about WGA in forensics and suggests the forensic analysis of single-donor bioparticles and of single cells as promising applications.
Discrimination of Stressed and Non-Stressed Food-Related Bacteria Using Raman-Microspectroscopy
(2022)
As the identification of microorganisms becomes more significant in industry, so does the utilization of microspectroscopy and the development of effective chemometric models for data analysis and classification. Since only microorganisms cultivated under laboratory conditions can be identified, but they are exposed to a variety of stress factors, such as temperature differences, there is a demand for a method that can take these stress factors and the associated reactions of the bacteria into account. Therefore, bacterial stress reactions to lifetime conditions (regular treatment, 25 °C, HCl, 2-propanol, NaOH) and sampling conditions (cold sampling, desiccation, heat drying) were induced to explore the effects on Raman spectra in order to improve the chemometric models. As a result, in this study nine food-relevant bacteria were exposed to seven stress conditions in addition to routine cultivation as a control. Spectral alterations in lipids, polysaccharides, nucleic acids, and proteins were observed when compared to normal growth circumstances without stresses. Regardless of the involvement of several stress factors and storage times, a model for differentiating the analyzed microorganisms from genus down to strain level was developed. Classification of the independent training dataset at genus and species level for Escherichia coli and at strain level for the other food relevant microorganisms showed a classification rate of 97.6%.
With the increasing demand for ultrapure water in the pharmaceutical and semiconductor industry, the need for precise measuring instruments for those applications is also growing. One critical parameter of water quality is the amount of total organic carbon (TOC). This work presents a system that uses the advantage of the increased oxidation power achieved with UV/O3 advanced oxidation process (AOP) for TOC measurement in combination with a significant miniaturization compared to the state of the art. The miniaturization is achieved by using polymer-electrolyte membrane (PEM) electrolysis cells for ozone generation in combination with UV-LEDs for irradiation of the measuring solution, as both components are significantly smaller than standard equipment. Conductivity measurement after oxidation is the measuring principle and measurements were carried out in the TOC range between 10 and 1000 ppb TOC. The suitability of the system for TOC measurement is demonstrated using the oxidation by ozonation combined with UV irradiation of defined concentrations of isopropyl alcohol (IPA).
Hydrophilic surface-enhanced Raman spectroscopy (SERS) substrates were prepared by a combination of TiO2-coatings of aluminium plates through a direct titanium tetraisopropoxide (TTIP) coating and drop coated by synthesised gold nanoparticles (AuNPs). Differences between the wettability of the untreated substrates, the slowly dried Ti(OH)4 substrates and calcinated as well as plasma treated TiO2 substrates were analysed by water contact angle (WCA) measurements. The hydrophilic behaviour of the developed substrates helped to improve the distribution of the AuNPs, which reflects in overall higher lateral SERS enhancement. Surface enhancement of the substrates was tested with target molecule rhodamine 6G (R6G) and a fibre-coupled 638 nm Raman spectrometer. Additionally, the morphology of the substrates was characterised using scanning electron microscopy (SEM) and Raman microscopy. The studies showed a reduced influence of the coffee ring effect on the particle distribution, resulting in a more broadly distributed edge region, which increased the spatial reproducibility of the measured SERS signal in the surface-enhanced Raman mapping measurements on mm scale.
Hydrogen‐Bonded Cholesteric Liquid Crystals—A Modular Approach Toward Responsive Photonic Materials
(2022)
A supramolecular approach for photonic materials based on hydrogen-bonded cholesteric liquid crystals is presented. The modular toolbox of low-molecular-weight hydrogen-bond donors and acceptors provides a simple route toward liquid crystalline materials with tailor-made thermal and photonic properties. Initial studies reveal broad application potential of the liquid crystalline thin films for chemo- and thermosensing. The chemosensing performance is based on the interruption of the intermolecular forces between the donor and acceptor moieties by interference with halogen-bond donors. Future studies will expand the scope of analytes and sensing in aqueous media. In addition, the implementation of the reported materials in additive manufacturing and printed photonic devices is planned.
Polymer fibers with liquid crystals (LCs) in the core have potential as autonomous sensors of airborne volatile organic compounds (VOCs), with a high surface-to-volume ratio enabling fast and sensitive response and an attractive non-woven textile form factor. We demonstrate their ability to continuously and quantitatively measure the concentration of toluene, cyclohexane, and isopropanol as representative VOCs, via the impact of each VOC on the LC birefringence. The response is fully reversible and repeatable over several cycles, the response time can be as low as seconds, and high sensitivity is achieved when the operating temperature is near the LC-isotropic transition temperature. We propose that a broad operating temperature range can be realized by combining fibers with different LC mixtures, yielding autonomous VOC sensors suitable for integration in apparel or in furniture that can compete with existing consumer-grade electronic VOC sensors in terms of sensitivity and response speed.
Intimate swabs taken for examination in sexual assault cases typically yield mixtures of sperm and epithelial cell types. While powerful, differential extraction protocols to overcome such cell type mixtures by separate lysis of epithelial cells and spermatozoa can still prove ineffective, in particular if only few sperm cells are present or if swabs contain sperm from more than one individual leading to complex low level DNA mixtures. A means to avoid such mixtures consists in the analysis of single micromanipulated sperm cells. However, the quantity of DNA from single sperm cells is not sufficient for conventional STR analysis. Here, we describe a simple method for micromanipulating individual sperm cells from intimate swabs and show that whole genome amplification can generate sufficient amounts of DNA from single cells for subsequent DNA profiling. We recovered over 80% of alleles of haploid autosomal STR profiles from the majority of individual sperm cells. Furthermore, we demonstrate that in mixtures of sperm from two contributors, Y-STR and X-STR profiles of individual sperm cells can be used to sort the haploid autosomal profiles to develop the diploid consensus STR profiles of the individual donors. Finally, by analysing single sperm cells from mock sexual assault swabs with one or two sperm donors, we showed that our protocols enabled the identification of the unknown male contributors.
Because the robust and rapid determination of spoilage microorganisms is becoming increasingly important in industry, the use of IR microspectroscopy, and the establishment of robust and versatile chemometric models for data processing and classification, is gaining importance. To further improve the chemometric models, bacterial stress responses were induced, to study the effect on the IR spectra and to improve the chemometric model. Thus, in this work, nine important food-relevant microorganisms were subjected to eight stress conditions, besides the regular culturing as a reference. Spectral changes compared to normal growth conditions without stressors were found in the spectral regions of 900–1500 cm−1 and 1500–1700 cm−1. These differences might stem from changes in the protein secondary structure, exopolymer production, and concentration of nucleic acids, lipids, and polysaccharides. As a result, a model for the discrimination of the studied microorganisms at the genus, species and strain level was established, with an accuracy of 96.6%. This was achieved despite the inclusion of various stress conditions and times after incubation of the bacteria. In addition, a model was developed for each individual microorganism, to separate each stress condition or regular treatment with 100% accuracy.
A series of reactive binaphthyl‐diimine‐based dopants is prepared and investigated with respect to their potential for the chiral induction of structural coloration in nematic liquid crystal mixture E7 and the selective photonic sensing of nitrogen dioxide (NO2). Studies of the helical twisting power (HTP) in 4‐cyano‐4′‐pentylbiphenyl (5CB) reveal HTP values as high as 375 µm‐1 and the tremendous impact of structural compatibility and changes of the dihedral binaphthyl angle on the efficiency of the chiral transfer. Detailed investigation of the sensing capabilities of the systems reveals an extraordinarily high selectivity for NO2 and a response to concentrations as low as 100 ppm. The systems show a direct response to the analyte gas leading to a concentration‐dependent shift of the reflectance wavelength of up to several hundred nanometers. Incorporation of copper ions remarkably improves the sensor's properties in terms of sensitivity and selectivity, enabling the tailored tweaking of the system's properties.
The simultaneous operation of multiple different semiconducting metal oxide (MOX) gas sensors is demanding for the readout circuitry. The challenge results from the strongly varying signal intensities of the various sensor types to the target gas. While some sensors change their resistance only slightly, other types can react with a resistive change over a range of several decades. Therefore, a suitable readout circuit has to be able to capture all these resistive variations, requiring it to have a very large dynamic range. This work presents a compact embedded system that provides a full, high range input interface (readout and heater management) for MOX sensor operation. The system is modular and consists of a central mainboard that holds up to eight sensor-modules, each capable of supporting up to two MOX sensors, therefore supporting a total maximum of 16 different sensors. Its wide input range is archived using the resistance-to-time measurement method. The system is solely built with commercial off-the-shelf components and tested over a range spanning from 100Ω to 5 GΩ (9.7 decades) with an average measurement error of 0.27% and a maximum error of 2.11%. The heater management uses a well-tested power-circuit and supports multiple modes of operation, hence enabling the system to be used in highly automated measurement applications. The experimental part of this work presents the results of an exemplary screening of 16 sensors, which was performed to evaluate the system’s performance.
Surface-enhanced Raman spectroscopy (SERS) with subsequent chemometric evaluation was performed for the rapid and non-destructive differentiation of seven important meat-associated microorganisms, namely Brochothrix thermosphacta DSM 20171, Pseudomonas fluorescens DSM 4358, Salmonella enterica subsp. enterica sv. Enteritidis DSM 14221, Listeria monocytogenes DSM 19094, Micrococcus luteus DSM 20030, Escherichia coli HB101 and Bacillus thuringiensis sv. israelensis DSM 5724. A simple method for collecting spectra from commercial paper-based SERS substrates without any laborious pre-treatments was used. In order to prepare the spectroscopic data for classification at genera level with a subsequent chemometric evaluation consisting of principal component analysis and discriminant analysis, a pre-processing method with spike correction and sum normalisation was performed. Because of the spike correction rather than exclusion, and therefore the use of a balanced data set, the multivariate analysis of the data is significantly resilient and meaningful. The analysis showed that the differentiation of meat-associated microorganisms and thereby the detection of important meat-related pathogenic bacteria was successful on genera level and a cross-validation as well as a classification of ungrouped data showed promising results, with 99.5 % and 97.5 %, respectively.
Optical gas sensors based on chiral-nematic liquid crystals (N* LCs) forming one-dimensional photonic crystals do not require electrical energy and have a considerable potential to supplement established types of sensors. A chiral-nematic phase with tunable selective reflection is induced in a nematic host LC by adding reactive chiral dopants. The selective chemical reaction between dopant and analyte is capable to vary the pitch length (the lattice constant) of the soft, self-assembled, one-dimensional photonic crystal. The progress of the ongoing chemical reaction can be observed even by naked eye because the color of the samples varies. In this work, we encapsulate the responsive N* LC in microscale polyvinylpyrrolidone (PVP) fibers via coaxial electrospinning. The sensor is, thus, given a solid form and has an improved stability against nonavoidable environmental influences. The reaction behavior of encapsulated and nonencapsulated N* LC toward a gaseous analyte is compared, systematically. Making use of the encapsulation is an important step to improve the applicability.
Explorative experiments were done to figure out differences in the emission of volatile organic compounds (VOCs) of not infested trees and trees infested by Anoplophora glabripennis (Asian longhorn beetle, ALB), a quarantine pest. Therefore, VOCs from some native insect species, Anoplophora glabripennis infested Acer, stressed Acer, healthy Acer, Populus and Salix were obtained by enrichment on adsorbents. Qualitative analysis was done by thermal desorption gas chromatography coupled with a mass selective detector (TD-GC/MS). Altogether 169 substances were identified. 11 substances occur from ALB infested or mechanically damaged trees i.e. stressed trees, but not from healthy trees. (+)-Cyclosativene, (+)-α-longipinene, copaene and caryophyllene are detectable only from ALB-infested Acer not from mechanically damaged or healthy Acer. However, these substances are also emitted by healthy Salix. 2,4-Dimethyl-1-heptene is among all tree samples exclusively present in the ambience of ALB-infested trees. It´s rarely detectable from native insect species’ samples.
The choice of suitable semiconducting metal oxide (MOX) gas sensors for the detection of a specific gas or gas mixture is time-consuming since the sensor’s sensitivity needs to be characterized at multiple temperatures to find its optimal operating conditions. To obtain reliable measurement results, it is very important that the power for the sensor’s integrated heater is stable, regulated and error-free (or error-tolerant). Especially the error-free requirement can be only be achieved if the power supply implements failure-avoiding and failure-detection methods. The biggest challenge is deriving multiple different voltages from a common supply in an efficient way while keeping the system as small and lightweight as possible. This work presents a reliable, compact, embedded system that addresses the power supply requirements for fully automated simultaneous sensor characterization for up to 16 sensors at multiple temperatures. The system implements efficient (avg. 83.3% efficiency) voltage conversion with low ripple output (<32 mV) and supports static or temperature-cycled heating modes. Voltage and current of each channel are constantly monitored and regulated to guarantee reliable operation. To evaluate the proposed design, 16 sensors were screened. The results are shown in the experimental part of this work.
ドイツで学んだ研究の方法と働き方
(2018)