TrUSD - Verbundprojekt: Transparente und selbstbestimmte Ausgestaltung der Datennutzung im Unternehmen, Teilvorhaben: Konzeptionierung, Implementierung und Evaluation von Privacy Dashboards im Arbeitnehmerdatenschutz (DE/BMBF/16KIS0899)
Refine
Departments, institutes and facilities
Document Type
- Article (5)
- Conference Object (3)
- Part of a Book (1)
- Contribution to a Periodical (1)
- Report (1)
Keywords
- GDPR (3)
- Employee data protection (1)
- Informational self-determination (1)
- Mental Models (1)
- Privacy engineering (1)
- Privacy in the workplace (1)
- Privacy patterns (1)
- Privacy perceptions (1)
- User-Centered Design (1)
- employee privacy (1)
The European General Data Protection Regulation requires the implementation of Technical and Organizational Measures (TOMs) to reduce the risk of illegitimate processing of personal data. For these measures to be effective, they must be applied correctly by employees who process personal data under the authority of their organization. However, even data processing employees often have limited knowledge of data protection policies and regulations, which increases the likelihood of misconduct and privacy breaches. To lower the likelihood of unintentional privacy breaches, TOMs must be developed with employees’ needs, capabilities, and usability requirements in mind. To reduce implementation costs and help organizations and IT engineers with the implementation, privacy patterns have proven to be effective for this purpose. In this chapter, we introduce the privacy pattern Data Cart, which specifically helps to develop TOMs for data processing employees. Based on a user-centered design approach with employees from two public organizations in Germany, we present a concept that illustrates how Privacy by Design can be effectively implemented. Organizations, IT engineers, and researchers will gain insight on how to improve the usability of privacy-compliant tools for managing personal data.
The processing of employees’ personal data is dramatically increasing, yet there is a lack of tools that allow employees to manage their privacy. In order to develop these tools, one needs to understand what sensitive personal data are and what factors influence employees’ willingness to disclose. Current privacy research, however, lacks such insights, as it has focused on other contexts in recent decades. To fill this research gap, we conducted a cross-sectional survey with 553 employees from Germany. Our survey provides multiple insights into the relationships between perceived data sensitivity and willingness to disclose in the employment context. Among other things, we show that the perceived sensitivity of certain types of data differs substantially from existing studies in other contexts. Moreover, currently used legal and contextual distinctions between different types of data do not accurately reflect the subtleties of employees’ perceptions. Instead, using 62 different data elements, we identified four groups of personal data that better reflect the multi-dimensionality of perceptions. However, previously found common disclosure antecedents in the context of online privacy do not seem to affect them. We further identified three groups of employees that differ in their perceived data sensitivity and willingness to disclose, but neither in their privacy beliefs nor in their demographics. Our findings thus provide employers, policy makers, and researchers with a better understanding of employees’ privacy perceptions and serve as a basis for future targeted research
on specific types of personal data and employees.
Components and Architecture for the Implementation of Technology-Driven Employee Data Protection
(2021)
The ongoing digitisation in everyday working life means that ever larger amounts of personal data of employees are processed by their employers. This development is particularly problematic with regard to employee data protection and the right to informational self-determination. We strive for the use of company Privacy Dashboards as a means to compensate for missing transparency and control. For conceptual design we use among other things the method of mental models. We present the methodology and first results of our research. We highlight the opportunities that such an approach offers for the user-centred development of Privacy Dashboards.
Applied privacy research has so far focused mainly on consumer relations in private life. Privacy in the context of employment relationships is less well studied, although it is subject to the same legal privacy framework in Europe. The European General Data Protection Regulation (GDPR) has strengthened employees’ right to privacy by obliging that employers provide transparency and intervention mechanisms. For such mechanisms to be effective, employees must have a sound understanding of their functions and value. We explored possible boundaries by conducting a semistructured interview study with 27 office workers in Germany and elicited mental models of the right to informational self-determination, which is the European proxy for the right to privacy. We provide insights into (1) perceptions of different categories of data, (2) familiarity with the legal framework regarding expectations for privacy controls, and (3) awareness of data processing, data flow, safeguards, and threat models. We found that legal terms often used in privacy policies used to describe categories of data are misleading. We further identified three groups of mental models that differ in their privacy control requirements and willingness to accept restrictions on their privacy rights. We also found ignorance about actual data flow, processing, and safeguard implementation. Participants’ mindsets were shaped by their faith in organizational and technical measures to protect privacy. Employers and developers may benefit from our contributions by understanding the types of privacy controls desired by office workers and the challenges to be considered when conceptualizing and designing usable privacy protections in the workplace.