576 Genetik und Evolution
Refine
Departments, institutes and facilities
Document Type
- Article (43)
- Part of a Book (11)
- Other (2)
- Doctoral Thesis (1)
- Preprint (1)
Year of publication
Keywords
- DNA typing (3)
- DNA damage (2)
- Short tandem repeat (STR) (2)
- Whole genome amplification (2)
- apoptosis (2)
- forensic (2)
- 5-Oxoprolinase (1)
- 5-oxoprolinuria (1)
- ACacylcarnitines (1)
- AMAtypical myopathy (1)
Background: The global rate of Caesarean section (CS) is 21.1 % (2021) and is rising worldwide. CS presents the third highest cumulative incidence for surgical site infections. Maternal infections around the time of childbirth account for 1 out of 10 maternal deaths worldwide. Therefore, perioperative antibiotic prophylaxis (PAP) during CS is common standard of care and part of numerous recommendations from expert bodies such as the World Health Organization (WHO) and different national gynecological professional associations. According to these, first and second generation cephalosporins like cefuroxime are the agents of choice for this indication. In fact, the use of PAP significantly reduces maternal morbidity and mortality rates. Whereas the side effect of this measure on the microbiome of the newborn has been the subject of repeated clinical studies, data on specific and especially long-term effects on the gut microbiome of the mothers are still lacking. MAMA is the first study to specifically and systematically investigate this question.
The epithelial sodium channel (ENaC) plays a key role in osmoregulation in tetrapod vertebrates and is a candidate receptor for salt taste sensation. There are four ENaC subunits (alpha, beta, gamma, & delta) which form alpha beta gamma or delta beta gamma-ENaCs. While alpha beta gamma-ENaC is a maintenance protein controlling sodium and potassium homeostasis, delta beta gamma-ENaC might represent a stress protein monitoring high sodium concentrations. The delta-subunit emerged with water-to-land transition of tetrapod vertebrate ancestors. We investigated the evolutionary path of ENaC-coding genes in Cetartiodactyla, a group comprising even-toed ungulates and the cetaceans (whales/dolphins) which transitioned from terrestrial to marine environments in the Eocene. The genes SCNN1A (alpha-ENaC), SCNN1B (beta-ENaC) and SCNN1G (gamma-ENaC) are intact in all 22 investigated cetartiodactylan families. While SCNN1D (delta-ENaC) is intact in terrestrial Artiodactyla, it is a pseudogene in 12 cetacean families. A fusion of SCNN1D exons 11 and 12 under preservation of the open reading frame was observed in the Antilopinae, representing a new feature of this clade. Transcripts of SCNN1A, SCNN1B and SCNN1G were present in kidney and lung tissues of Bottlenose dolphins, highlighting alpha beta gamma-ENaC's role as a maintenance protein. Consistent with SCNN1D loss, Bottlenose dolphins and Beluga whales did not show behavioural differences to stimuli with or without sodium in seawater-equivalent concentrations. These data suggest a function of delta-ENaC as a sodium sensing protein which might have become obsolete in cetaceans after the migration to high-salinity marine environments. Consistently, there is reduced selection pressure or pseudogenisation of SCNN1D in other marine mammals, including sirenians, pinnipeds and sea otter.
Funktionale Gen-Analytik
(2022)
Modern forensic DNA quantitation assays provide information on the suitability of a DNA extract for a particular type of analysis, on the amount of sample to put into the analysis in order to yield an optimal (or best possible) result, and on the requirement for optional steps to improve the analysis. To achieve a high sensitivity and specificity, these assays are based on quantitative PCR (qPCR) and analyze target DNA loci that are present in multiple copies distributed across the genome. These target loci allow the determination of the amount of DNA, the degree of DNA degradation, and the proportion of DNA from male contributors. In addition, internal control DNA of a known amount is analyzed in order to inform about the presence of PCR inhibitors. These assays are nowadays provided as commercial kits that have been technically validated and are compatible with common qPCR instruments. In this review, the principles of forensic qPCR assays will be explained, followed by information on the nature of DNA loci targeted by modern forensic qPCR assays. Finally, we critically draw attention to the current trend of manufacturers not to disclose the exact nature of the target loci of their commercial kits.
Tauopathies are a heterogeneous group of neurologic diseases characterized by pathological axodendritic distribution, ectopic expression, and/or phosphorylation and aggregation of the microtubule-associated protein TAU, encoded by the gene MAPT. Neuronal dysfunction, dementia, and neurodegeneration are common features of these often detrimental diseases. A neurodegenerative disease is considered a primary tauopathy when MAPT mutations/haplotypes are its primary cause and/or TAU is the main pathological feature. In case TAU pathology is observed but superimposed by another pathological hallmark, the condition is classified as a secondary tauopathy. In some tauopathies (e.g. MAPT-associated frontotemporal dementia (FTD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Alzheimer's disease (AD)) TAU is recognized as a significant pathogenic driver of the disease. In many secondary tauopathies, including Parkinson's disease (PD) and Huntington's disease (HD), TAU is suggested to contribute to the development of dementia, but in others (e.g. Niemann-Pick disease (NPC)) TAU may only be a bystander. The genetic and pathological mechanisms underlying TAU pathology are often not fully understood. In this review, the genetic predispositions and variants associated with both primary and secondary tauopathies are examined in detail, assessing evidence for the role of TAU in these conditions. We highlight less common genetic forms of tauopathies to increase awareness for these disorders and the involvement of TAU in their pathology. This approach not only contributes to a deeper understanding of these conditions but may also lay the groundwork for potential TAU-based therapeutic interventions for various tauopathies.
Trade of wild-caught animals is illegal for many taxa and in many countries. Common regulatory procedures involve documentation and marking techniques. However, these procedures are subject to fraud and thus should be complemented by routine genetic testing in order to authenticate the captive-bred origin of animals intended for trade. A suitable class of genetic markers are SNPSTRs that combine a short tandem repeat (STR) and single nucleotide polymorphisms (SNPs) within one amplicon. This combined marker type can be used for genetic identification and for parentage analyses and in addition, provides insight into haplotype history. As a proof of principle, this study establishes a set of 20 SNPSTR markers for Athene noctua, one of the most trafficked owls in CITES Appendix II. These markers can be coamplified in a single multiplex reaction. Based on population data, the percentage of observed and expected heterozygosities of the markers ranged from 0.400 to 1.000 and 0.545 to 0.850, respectively. A combined probability of identity of 5.3*10-23 was achieved with the whole set, and combined parentage exclusion probabilities reached over 99.99%, even if the genotype of one parent was missing. A direct comparison of an owl family and an unrelated owl demonstrated the applicability of the SNPSTR set in parentage testing. The established SNPSTR set thus proved to be highly useful for identifying individuals and analysing parentage to determine wild or captive origin. We propose to implement SNPSTR-based routine certification in wildlife trade as a way to reveal animal laundering and misdeclaration of wild-caught animals.
Background: Bloodstream infections (BSIs) remain a significant cause of mortality worldwide. Causative pathogens are routinely identified and susceptibility tested but only very rarely investigated for their resistance genes, virulence factors, and clonality. Our aim was to gain insight into the clonality patterns of different species causing BSI and the clinical relevance of distinct virulence genes.
Methods: For this study, we whole-genome-sequenced over 400 randomly selected important pathogens isolated from blood cultures in our diagnostic department between 2016 and 2021. Genomic data on virulence factors, resistance genes, and clonality were cross-linked with in-vitro data and demographic and clinical information.
Results: The investigation yielded extensive and informative data on the distribution of genes implicated in BSI as well as on the clonality of isolates across various species.
Conclusion: Associations between survival outcomes and the presence of specific genes must be interpreted with caution, and conducting replication studies with larger sample sizes for each species appears mandatory. Likewise, a deeper knowledge of virulence and host factors will aid in the interpretation of results and might lead to more targeted therapeutic and preventive measures. Monitoring transmission dynamics more efficiently holds promise to serve as a valuable tool in preventing in particular BSI caused by nosocomial pathogens.
Microbiome analyses are essential for understanding microorganism composition and diversity, but interpretation is often challenging due to biological and technical variables. DNA extraction is a critical step that can significantly bias results, particularly in samples containing a high abundance of challenging-to-lyse microorganisms. Taking into consideration the distinctive microenvironments observed in different bodily locations, our study sought to assess the extent of bias introduced by suboptimal bead-beating during DNA extraction across diverse clinical sample types. The question was whether complex targeted extraction methods are always necessary for reliable taxonomic abundance estimation through amplicon sequencing or if simpler alternatives are effective for some sample types. Hence, for four different clinical sample types (stool, cervical swab, skin swab, and hospital surface swab samples), we compared the results achieved from extracting targeted manual protocols routinely used in our research lab for each sample type with automated protocols specifically not designed for that purpose. Unsurprisingly, we found that for the stool samples, manual extraction protocols with vigorous bead-beating were necessary in order to avoid erroneous taxa proportions on all investigated taxonomic levels and, in particular, false under- or overrepresentation of important genera such as Blautia, Faecalibacterium, and Parabacteroides. However, interestingly, we found that the skin and cervical swab samples had similar results with all tested protocols. Our results suggest that the level of practical automation largely depends on the expected microenvironment, with skin and cervical swabs being much easier to process than stool samples. Prudent consideration is necessary when extending the conclusions of this study to applications beyond rough estimations of taxonomic abundance.
The development of whole-genome amplification (WGA) techniques has opened up new avenues for genetic analysis and genome research, in particular by facilitating the genome-wide analysis of few or even single copies of genomic DNA, such as from single cells (prokaryotic or eukaryotic) or virions. Using WGA, the few copies of genomic DNA obtained from such entities are unspecifically amplified using PCR or PCR-related processes in order to obtain higher DNA quantities that can then be successfully analysed further.
Cyanobacteria are gaining considerable interest as a method of supporting the long-term presence of humans on the Moon and settlements on Mars due to their ability to produce oxygen and their potential as bio-factories for space biotechnology/synthetic biology and other applications. Since many unknowns remain in our knowledge to bridge the gap and move cyanobacterial bioprocesses from Earth to space, we investigated cell division resumption on the rehydration of dried Chroococcidiopsis sp. CCMEE 029 accumulated DNA damage while exposed to space vacuum, Mars-like conditions, and Fe-ion radiation. Upon rehydration, the monitoring of the ftsZ gene showed that cell division was arrested until DNA damage was repaired, which took 48 h under laboratory conditions. During the recovery, a progressive DNA repair lasting 48 h of rehydration was revealed by PCR-stop assay. This was followed by overexpression of the ftsZ gene, ranging from 7.5- to 9-fold compared to the non-hydrated samples. Knowing the time required for DNA repair and cell division resumption is mandatory for deep-space experiments that are designed to unravel the effects of reduced/microgravity on this process. It is also necessary to meet mission requirements for dried-sample implementation and real-time monitoring upon recovery. Future experiments as part of the lunar exploration mission Artemis and the lunar gateway station will undoubtedly help to move cyanobacterial bioprocesses beyond low Earth orbit. From an astrobiological perspective, these experiments will further our understanding of microbial responses to deep-space conditions.
Forensic DNA profiles are established by multiplex PCR amplification of a set of highly variable short tandem repeat (STR) loci followed by capillary electrophoresis (CE) as a means to assign alleles to PCR products of differential length. Recently, CE analysis of STR amplicons has been supplemented by high-throughput next generation sequencing (NGS) techniques that are able to detect isoalleles bearing sequence polymorphisms and allow for an improved analysis of degraded DNA. Several such assays have been commercialised and validated for forensic applications. However, these systems are cost-effective only when applied to high numbers of samples. We report here an alternative, cost-efficient shallow-sequence output NGS assay called maSTR assay that, in conjunction with a dedicated bioinformatics pipeline called SNiPSTR, can be implemented with standard NGS instrumentation. In a back-to-back comparison with a CE-based, commercial forensic STR kit, we find that for samples with low DNA content, with mixed DNA from different individuals, or containing PCR inhibitors, the maSTR assay performs equally well, and with degraded DNA is superior to CE-based analysis. Thus, the maSTR assay is a simple, robust and cost-efficient NGS-based STR typing method applicable for human identification in forensic and biomedical contexts.
When the Artemis missions launch, NASA's Orion spacecraft (and crew as of the Artemis II mission) will be exposed to the deep space radiation environment beyond the protection of Earth's magnetosphere. Hence, it is essential to characterize the effects of space radiation, microgravity, and the combination thereof on cells and organisms, i.e., to quantify any correlations between the deep space radiation environment, genetic variation, and induced genetic changes in cells. To address this, the Artemis I mission will include the Peristaltic Laboratory for Automated Science with Multigenerations (PLASM) hardware containing the Deep Space Radiation Genomics (DSRG) experiment. The scientific aims of DSRG are (i) to identify the metabolic and genomic pathways in yeast affected by microgravity, space radiation, and their combination, and (ii) to differentiate between gravity and radiation exposure on single-gene deletion/overexpressing strains' ability to thrive in the spaceflight environment. Yeast is used as a model system because 70% of its essential genes have a human homolog, and over half of these homologs can functionally replace their human counterpart. As part of the experiment preparation towards spaceflight, an Experiment Verification Test (EVT) was performed at the Kennedy Space Center to verify that the experiment design, hardware, and approach to automated operations will enable achieving the scientific aims. For the EVT, fluidic systems were assembled, sterilized, loaded, and acceptance-tested, and subsequently integrated with the engineering parts to produce a flight-like PLASM unit. Each fluidic system consisted of (i) a Media Bag, (ii) four Culture Bags loaded with Saccharomyces cerevisiae (two with deletion series and the remaining two with overexpression series), and (iii) tubing and check valves. The EVT PLASM unit was put under a temperature profile replicating the anticipated different phases of flight, including handover to launch, spaceflight, and splashdown to handover back to the science team, for a 58-day period. At EVT completion, the rate of activation, cellular growth, RNA integrity, and sample contamination were interrogated. All of the experiment's success criteria were satisfied, encouraging our efforts to perform this investigation on Artemis I. This manuscript thus describes the process of spaceflight experiment design maturation with a focus on the EVT, its results, DSRG's preparation for its planned launch on Artemis I in 2022, and how the PLASM hardware can enable other scientific goals on future Artemis missions and/or the Lunar Orbital Platform – Gateway.
Modern PCR-based analytical techniques have reached sensitivity levels that allow for obtaining complete forensic DNA profiles from even tiny traces containing genomic DNA amounts as small as 125 pg. Yet these techniques have reached their limits when it comes to the analysis of traces such as fingerprints or single cells. One suggestion to overcome these limits has been the usage of whole genome amplification (WGA) methods. These methods aim at increasing the copy number of genomic DNA and by this means generate more template DNA for subsequent analyses. Their application in forensic contexts has so far remained mostly an academic exercise, and results have not shown significant improvements and even have raised additional analytical problems. Until very recently, based on these disappointments, the forensic application of WGA seems to have largely been abandoned. In the meantime, however, novel improved methods are pointing towards a perspective for WGA in specific forensic applications. This review article tries to summarize current knowledge about WGA in forensics and suggests the forensic analysis of single-donor bioparticles and of single cells as promising applications.
Background: Atypical myopathy (AM), an acquired multiple acyl-CoA dehydrogenase deficiency (MADD) in horses, induce changes in mitochondrial metabolism. Only few veterinary laboratories offer diagnostic testing for this disease. Inborn and acquired MADD exist in humans, therefore determination of organic acids (OA) in urine and acylcarnitines (AC) in blood by assays available in medical laboratories can serve as AM diagnostics. The evolution of OA and AC profiles in surviving horses is unreported.
Methods: AC profiles using electrospray ionization tandem mass spectrometry (ESI-MS/MS) and OA in urine using gas chromatography mass spectrometry (GC–MS) were determined in dried blot spots (DBS, n = 7) and urine samples (n = 5) of horses with AM (n = 7) at disease presentation and in longitudinal samples from 3/4 survivors and compared to DBS (n = 16) and urine samples (n = 7) from control horses using the Wilcoxon test.
Results: All short- (C2-C5) and medium-chain (C6-C12) AC in blood differed significantly (p < 0.008) between horses with AM and controls, except for C5:1 (p = 0.45) and C5OH + C4DC (p = 0.06). In AM survivors the AC concentrations decreased over time but were still partially elevated after 7 days. 14/62 (23%) of OA differed significantly between horses with AM and control horses. Concentrations of ethylmalonic acid, 2-hydroxyglutaric acid and the acylglycines (butyryl-, valeryl-, and hexanoylglycine) were highly elevated in the urine of all horses with AM at the day of disease presentation. In AM survivors, concentrations of those metabolites were initially lower and decreased during remission to approach normalization after 7 days.
Conclusion: OA and AC profiling by specialized human medical laboratories was used to diagnose AM in horses. Elevation of specific metabolites were still evident several days after disease presentation, allowing diagnosis via analysis of samples from convalescent animals.
Intimate swabs taken for examination in sexual assault cases typically yield mixtures of sperm and epithelial cell types. While powerful, differential extraction protocols to overcome such cell type mixtures by separate lysis of epithelial cells and spermatozoa can still prove ineffective, in particular if only few sperm cells are present or if swabs contain sperm from more than one individual leading to complex low level DNA mixtures. A means to avoid such mixtures consists in the analysis of single micromanipulated sperm cells. However, the quantity of DNA from single sperm cells is not sufficient for conventional STR analysis. Here, we describe a simple method for micromanipulating individual sperm cells from intimate swabs and show that whole genome amplification can generate sufficient amounts of DNA from single cells for subsequent DNA profiling. We recovered over 80% of alleles of haploid autosomal STR profiles from the majority of individual sperm cells. Furthermore, we demonstrate that in mixtures of sperm from two contributors, Y-STR and X-STR profiles of individual sperm cells can be used to sort the haploid autosomal profiles to develop the diploid consensus STR profiles of the individual donors. Finally, by analysing single sperm cells from mock sexual assault swabs with one or two sperm donors, we showed that our protocols enabled the identification of the unknown male contributors.
Polymerase Chain Reaction
(2021)
DNA Sequencing
(2021)
Isolation of DNA and RNA
(2021)
In forensic DNA profiling, the occurrence of complex mixed profiles is currently a common issue. Cases involving intimate swabs or skin flake tape liftings are prone to mixed profiles, because of more than one donor contributing to a DNA sample. By DNA profiling of single spermatozoa and skin flakes, problems associated with mixed profile could ideally be overcome. However, PCR is not a sensitive enough method to generate DNA profiles by STRs on single cells. Moreover, high quality intact DNA is required, but is not always available in skin flakes due to degradation. Additionally, single skin flakes are difficult to discriminate from other similar looking particles on tape liftings used to secure DNA samples from evidence. The main purpose of this study was to develop a method that enables DNA profiling of single sperm cells and skin flakes. After studying multiple whole genome amplification (WGA) protocols, REPLI-g Single Cell WGA was selected due to its suitability in the pre-amplification step of template DNA. Micromanipulation was used to isolate single spermatozoa. Furthermore, micromanipulation in combination with REPLI-g Single Cell WGA resulted in successful DNA profiling of single spermatozoa by using autosomal STRs as well as X- and Y-chromosomal STRs. The single spermatozoa DNA profiling method described in this thesis was successfully used to identify male contributors from mock intimate swabs with a mixture of semen from multiple male contributors. Different dyes were analysed to develop a staining method to discriminate skin flakes from other particles including particles such as those from hair cosmetic products. From all dyes tested, Orange G was the only dye which successfully discriminated skin flakes from hair product particles. Also, an alkaline based lysis protocol was developed that allowed PCR to be carried out directly on the lysates of single skin flakes. Furthermore, REPLI-g Single Cell WGA was tested on single skin flakes. In contrast to the single spermatozoa, REPLI-g Single Cell WGA was not successful in DNA profiling of single skin flakes. The single skin flake DNA profiling method described in this thesis was successfully used in correctly identifying contributors from mock mixed DNA evidence. Additionally, a small amplicon-based NGS method was tested on single skin flakes. Compared to the PCR and CE approach, the small amplicon-based NGS method improved DNA profiling of single skin flakes, giving a significant increase in allele recovery. In conclusion, this study shows circumventing mixtures is possible by DNA profiling of single spermatozoa, using micromanipulation and WGA. Furthermore, DNA profiling of single skin flakes has been improved by the staining of tape liftings methodology with Orange G, alkaline lysis, direct-PCR and a small amplicon-based NGS approach. Nonetheless, future work is required to assess the performance of the single spermatozoa method on mock swabs with more diluted semen. Also, commercially available NGS kits should be tested with single skin flakes and compared with the in-house NGS method.
Survival of patients with pediatric acute lymphoblastic leukemia (ALL) after allogeneic hematopoietic stem cell transplantation (allo-SCT) is mainly compromised by leukemia relapse, carrying dismal prognosis. As novel individualized therapeutic approaches are urgently needed, we performed whole-exome sequencing of leukemic blasts of 10 children with post–allo-SCT relapses with the aim of thoroughly characterizing the mutational landscape and identifying druggable mutations. We found that post–allo-SCT ALL relapses display highly diverse and mostly patient-individual genetic lesions. Moreover, mutational cluster analysis showed substantial clonal dynamics during leukemia progression from initial diagnosis to relapse after allo-SCT. Only very few alterations stayed constant over time. This dynamic clonality was exemplified by the detection of thiopurine resistance-mediating mutations in the nucleotidase NT5C2 in 3 patients’ first relapses, which disappeared in the post–allo-SCT relapses on relief of selective pressure of maintenance chemotherapy. Moreover, we identified TP53 mutations in 4 of 10 patients after allo-SCT, reflecting acquired chemoresistance associated with selective pressure of prior antineoplastic treatment. Finally, in 9 of 10 children’s post–allo-SCT relapse, we found alterations in genes for which targeted therapies with novel agents are readily available. We could show efficient targeting of leukemic blasts by APR-246 in 2 patients carrying TP53 mutations. Our findings shed light on the genetic basis of post–allo-SCT relapse and may pave the way for unraveling novel therapeutic strategies in this challenging situation.
Die Diskussion über Nutzen und Risiken der Biound Gentechnik beherrschte die Jahre von 1998 bis 2001. Die „grüne Gentechnik“ kämpfte auch 1997 gegen wachsende Widerstände. Erst als sich im Jahr 2001 die Medien mit der „roten“ Gentechnik befassten, sank der Anteil kritischer Vorbehalte und stieg die Akzeptanz gegenüber gentechnisch herstellten Medikamenten in der Bevölkerung. Die Entschlüsselung der menschlichen Erbanlage und die Diskussion um das Klonen von Menschen sowie die Forschung mit embryonalen Stammzellen führte neue Aspekte in die öffentliche Diskussion ein. Die Debatte findet seither auf allen politischen Ebenen statt. Im Zusammenhang mit der Genforschung werden in den Medien immer häufiger Moral und Ökonomie gegenübergestellt und gegeneinander abgewogen. In diesem Wirrwarr von unterschiedlichen und häufig auch widerstreitenden Interessen ist es nicht einfach, sich zurechtzufinden und schließlich zu einer eigenen Position zu gelangen. Umso wichtiger ist daher eine nüchterne Darstellung der Sachverhalte.