628 Sanitär- und Kommunaltechnik; Umwelttechnik
Refine
H-BRS Bibliography
- yes (4)
Departments, institutes and facilities
Document Type
- Article (2)
- Conference Object (2)
Keywords
- AOP (1)
- Mass transport (1)
- Nafion™ (1)
- O3/UV (1)
- PEM electrolysis (1)
- Permeation (1)
- TOC (1)
- Tap water (1)
- ozonation (1)
- ozone (1)
Operating an ozone-evolving PEM electrolyser in tap water: A case study of water and ion transport
(2022)
While PEM water electrolysis could be a favourable technique for in situ sanitization with ozone, its application is mainly limited to the use of ultrapure water to achieve a sufficient long-time stability. As additional charge carriers influence the occurring transport phenomena, we investigated the impact of different feed water qualities on the performance of a PEM tap water electrolyser for ozone evolution. The permeation of water and the four most abundant cations (Na+, K+, Ca2+, Mg2+) is characterised during stand-by and powered operation at different charge densities to quantify underlying transport mechanisms. Water transport is shown to linearly increase with the applied current (95 ± 2 mmol A−1 h−1) and occurs decoupled from ion permeation. A limitation of ion permeation is given by the transfer of ions in water to the anode/PEM interface. The unstabilized operation of a PEM electrolyser in tap water leads to a pH gradient which promotes the formation of magnesium and calcium carbonates and hydroxides on the cathode surface. The introduction of a novel auxiliary cathode in the anolytic compartment has shown to suppress ion permeation by close to 20%.
With the increasing demand for ultrapure water in the pharmaceutical and semiconductor industry, the need for precise measuring instruments for those applications is also growing. One critical parameter of water quality is the amount of total organic carbon (TOC). This work presents a system that uses the advantage of the increased oxidation power achieved with UV/O3 advanced oxidation process (AOP) for TOC measurement in combination with a significant miniaturization compared to the state of the art. The miniaturization is achieved by using polymer-electrolyte membrane (PEM) electrolysis cells for ozone generation in combination with UV-LEDs for irradiation of the measuring solution, as both components are significantly smaller than standard equipment. Conductivity measurement after oxidation is the measuring principle and measurements were carried out in the TOC range between 10 and 1000 ppb TOC. The suitability of the system for TOC measurement is demonstrated using the oxidation by ozonation combined with UV irradiation of defined concentrations of isopropyl alcohol (IPA).