664 Lebensmitteltechnologie
Refine
Departments, institutes and facilities
Document Type
- Article (13)
- Part of a Book (1)
- Doctoral Thesis (1)
- Report (1)
Keywords
- Raman spectroscopy (3)
- Chemometrics (2)
- Classification (2)
- Principal Components Analysis (2)
- SERS (2)
- classification (2)
- discriminant analysis (2)
- food-related bacteria (2)
- stress response (2)
- Acetylcholinesterase (AChE) (1)
Chain models as a tool to quantify the relation between soil, crop quality and human exposure
(2008)
„from stable to table“
(2008)
Spektroskopische Qualifizierung und Quantifizierung von Hyaluronsäure in Nahrungsergänzungsmitteln
(2023)
Discrimination of Stressed and Non-Stressed Food-Related Bacteria Using Raman-Microspectroscopy
(2022)
As the identification of microorganisms becomes more significant in industry, so does the utilization of microspectroscopy and the development of effective chemometric models for data analysis and classification. Since only microorganisms cultivated under laboratory conditions can be identified, but they are exposed to a variety of stress factors, such as temperature differences, there is a demand for a method that can take these stress factors and the associated reactions of the bacteria into account. Therefore, bacterial stress reactions to lifetime conditions (regular treatment, 25 °C, HCl, 2-propanol, NaOH) and sampling conditions (cold sampling, desiccation, heat drying) were induced to explore the effects on Raman spectra in order to improve the chemometric models. As a result, in this study nine food-relevant bacteria were exposed to seven stress conditions in addition to routine cultivation as a control. Spectral alterations in lipids, polysaccharides, nucleic acids, and proteins were observed when compared to normal growth circumstances without stresses. Regardless of the involvement of several stress factors and storage times, a model for differentiating the analyzed microorganisms from genus down to strain level was developed. Classification of the independent training dataset at genus and species level for Escherichia coli and at strain level for the other food relevant microorganisms showed a classification rate of 97.6%.
Hydrophilic surface-enhanced Raman spectroscopy (SERS) substrates were prepared by a combination of TiO2-coatings of aluminium plates through a direct titanium tetraisopropoxide (TTIP) coating and drop coated by synthesised gold nanoparticles (AuNPs). Differences between the wettability of the untreated substrates, the slowly dried Ti(OH)4 substrates and calcinated as well as plasma treated TiO2 substrates were analysed by water contact angle (WCA) measurements. The hydrophilic behaviour of the developed substrates helped to improve the distribution of the AuNPs, which reflects in overall higher lateral SERS enhancement. Surface enhancement of the substrates was tested with target molecule rhodamine 6G (R6G) and a fibre-coupled 638 nm Raman spectrometer. Additionally, the morphology of the substrates was characterised using scanning electron microscopy (SEM) and Raman microscopy. The studies showed a reduced influence of the coffee ring effect on the particle distribution, resulting in a more broadly distributed edge region, which increased the spatial reproducibility of the measured SERS signal in the surface-enhanced Raman mapping measurements on mm scale.
Because the robust and rapid determination of spoilage microorganisms is becoming increasingly important in industry, the use of IR microspectroscopy, and the establishment of robust and versatile chemometric models for data processing and classification, is gaining importance. To further improve the chemometric models, bacterial stress responses were induced, to study the effect on the IR spectra and to improve the chemometric model. Thus, in this work, nine important food-relevant microorganisms were subjected to eight stress conditions, besides the regular culturing as a reference. Spectral changes compared to normal growth conditions without stressors were found in the spectral regions of 900–1500 cm−1 and 1500–1700 cm−1. These differences might stem from changes in the protein secondary structure, exopolymer production, and concentration of nucleic acids, lipids, and polysaccharides. As a result, a model for the discrimination of the studied microorganisms at the genus, species and strain level was established, with an accuracy of 96.6%. This was achieved despite the inclusion of various stress conditions and times after incubation of the bacteria. In addition, a model was developed for each individual microorganism, to separate each stress condition or regular treatment with 100% accuracy.
Due to the use of fossil fuel resources, many environmental problems have been increasingly growing. Thus, the recent research focuses on the use of environment friendly materials from sustainable feedstocks for future fuels, chemicals, fibers and polymers. Lignocellulosic biomass has become the raw material of choice for these new materials. Recently, the research has focused on using lignin as a substitute material in many industrial applications. The antiradical and antimicrobial activity of lignin and lignin-based films are both of great interest for applications such as food packaging additives. DPPH assay was used to determine the antioxidant activity of Kraft lignin compared to Organosolv lignins from different biomasses. The purification procedure of Kraft lignin showed that double-fold selective extraction is the most efficient confirmed by UV-Vis, FTIR, HSQC, 31PNMR, SEC, and XRD. The antioxidant capacity was discussed regarding the biomass source, pulping process, and degree of purification. Lignin obtained from industrial black liquor are compared with beech wood samples: Biomass source influences the DPPH inhibition (softwood > grass) and the TPC (softwood < grass). DPPH inhibition affected by the polarity of the extraction solvent. Following the trend: ethanol > diethylether > acetone. Reduced polydispersity has positive influence on the DPPH inhibition. Storage decreased the DPPH inhibition but increased the TPC values. The DPPH assay was also used to discuss the antiradical activity of HPMC/lignin and HPMC/lignin/chitosan films. In both binary (HPMC/lignin) and ternary (HPMC/lignin/chitosan) systems the 5% addition showed the highest activity and the highest addition had the lowest. Both scavenging activity and antimicrobial activity are dependent on the biomass source; Organosolv of softwood > Kraft of softwood > Organosolv of grass. Lignins and lignin-containing films showed high antimicrobial activities against Gram-positive and Gram-negative bacteria at 35 °C and at low temperatures (0-7 °C). Purification of Kraft lignin has a negative effect on the antimicrobial activity while storage has positive effect. The lignin leaching in the produced films affected the activity positively and the chitosan addition enhances the activity for both Gram-positive and Gram-negative bacteria. Testing the films against food spoilage bacteria that grow at low temperatures revealed the activity of the 30% addition on HPMC/L1 film against both B. thermosphacta and P. fluorescens while L5 was active only against B. thermosphacta. In HPMC/lignin/chitosan films, the 5% addition exhibited activity against both food spoilage bacteria.
Surface-enhanced Raman spectroscopy (SERS) with subsequent chemometric evaluation was performed for the rapid and non-destructive differentiation of seven important meat-associated microorganisms, namely Brochothrix thermosphacta DSM 20171, Pseudomonas fluorescens DSM 4358, Salmonella enterica subsp. enterica sv. Enteritidis DSM 14221, Listeria monocytogenes DSM 19094, Micrococcus luteus DSM 20030, Escherichia coli HB101 and Bacillus thuringiensis sv. israelensis DSM 5724. A simple method for collecting spectra from commercial paper-based SERS substrates without any laborious pre-treatments was used. In order to prepare the spectroscopic data for classification at genera level with a subsequent chemometric evaluation consisting of principal component analysis and discriminant analysis, a pre-processing method with spike correction and sum normalisation was performed. Because of the spike correction rather than exclusion, and therefore the use of a balanced data set, the multivariate analysis of the data is significantly resilient and meaningful. The analysis showed that the differentiation of meat-associated microorganisms and thereby the detection of important meat-related pathogenic bacteria was successful on genera level and a cross-validation as well as a classification of ungrouped data showed promising results, with 99.5 % and 97.5 %, respectively.