Refine
Departments, institutes and facilities
Document Type
- Article (31)
- Conference Object (29)
Year of publication
Language
- English (60)
Keywords
To make best use of the exceptional good weather conditions at Chajnantor we developed CHAMP+, a two time seven pixel dual-color heterodyne array for operation in the 350 and 450 µm atmospheric windows. CHAMP+ uses state-of-the-art SIS-mixers provided by our collaborators at SRON. To maximize its performance, optical single sideband filter are implemented for each of the two subarrays, and most of the optics is operated cold (20K) to minimize noise contributions. The instrument can be operated remotely, under full computer control of all components. The autocorrelator backend, currently in operation with 2 × 1GHz of bandwidth for each of the 14 heterodyne channels, will be upgraded by a new technologies FFT spectrometer array in mid 2008. CHAMP+ has been commissioned successfully in late 2007. We will review the performance of the instrument "in the field," and present its characteristics as measured on-sky.
Earth’s nearest candidate supermassive black hole lies at the centre of the Milky Way1. Its electromagnetic emission is thought to be powered by radiatively inefficient accretion of gas from its environment2, which is a standard mode of energy supply for most galactic nuclei. X-ray measurements have already resolved a tenuous hot gas component from which the black hole can be fed3. The magnetization of the gas, however, which is a crucial parameter determining the structure of the accretion flow, remains unknown. Strong magnetic fields can influence the dynamics of accretion, remove angular momentum from the infalling gas4, expel matter through relativistic jets5 and lead to synchrotron emission such as that previously observed6, 7, 8. Here we report multi-frequency radio measurements of a newly discovered pulsar close to the Galactic Centre9, 10, 11, 12 and show that the pulsar’s unusually large Faraday rotation (the rotation of the plane of polarization of the emission in the presence of an external magnetic field) indicates that there is a dynamically important magnetic field near the black hole. If this field is accreted down to the event horizon it provides enough magnetic flux to explain the observed emission—from radio to X-ray wavelengths—from the black hole.
Millimetron is a Russian-led 12 m diameter submillimeter and far-infrared space observatory which is included in the Space Plan of the Russian Federation for launch around 2017. With its large collecting area and state-of-the-art receivers, it will enable unique science and allow at least one order of magnitude improvement with respect to the Herschel Space Observatory. Millimetron will be operated in two basic observing modes: as a single-dish observatory, and as an element of a ground-space very long baseline interferometry (VLBI) system. As single-dish, angular resolutions on the order of 3 to 12 arc sec will be achieved and spectral resolutions of up to a million employing heterodyne techniques. As VLBI antenna, the chosen elliptical orbit will provide extremely large VLBI baselines (beyond 300,000 km) resulting in micro-arc second angular resolution.
We report on submillimetre bolometer observations of the isolated neutron star RX J1856.5−3754 using the Large Apex Bolometer Camera bolometer array on the Atacama Pathfinder Experiment telescope. No cold dust continuum emission peak at the position of RX J1856.5−3754 was detected. The 3σ flux density upper limit of 5 mJy translates into a cold dust mass limit of a few earth masses. We use the new submillimetre limit, together with a previously obtained H-band limit, to constrain the presence of a gaseous, circumpulsar disc. Adopting a simple irradiated disc model, we obtain a mass accretion limit of Graphic and a maximum outer disc radius of ∼1014 cm. By examining the projected proper motion of RX J1856.5−3754, we speculate about a possible encounter of the neutron star with a dense fragment of the CrA molecular cloud a few thousand years ago.
The Anomalous X‐ray Pulsar 4U 0142+61 is the only neutron star where it is believed that one of the long searched‐for ‘fallback’ disks has been detected in the mid‐IR by Wang et al. [1] using Spitzer. Such a disk originates from material falling back to the NS after the supernova. We search for cold circumstellar material in the 90 GHz continuum using the Plateau de Bure Interferometer. No millimeter flux is detected at the position of 4U 0142+61, the upper flux limit is 150 μJy corresponding to the 3σ noise rms level. The re‐processed Spitzer MIPS 24μm data presented previously by Wang et al. [2] show some indication of flux enhancement at the position of the neutron star, albeit below the 3σ statistical significance limit. At far infrared wavelengths the source flux densities are probably below the Herschel confusion limits.
We present the performance of the upGREAT heterodyne array receivers on the SOFIA telescope after several years of operations. This instrument is a multi-pixel high resolution (R≳107) spectrometer for the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA). The receivers use 7-pixel subarrays configured in a hexagonal layout around a central pixel. The low frequency array receiver (LFA) has 2×7 pixels (dual polarization), and presently covers the 1.83–2.07THz frequency range, which allows to observe the [CII] and [OI] lines at 158μm and 145μm wavelengths. The high frequency array (HFA) covers the [OI] line at 63μm and is equipped with one polarization at the moment (7 pixels, which can be upgraded in the near future with a second polarization array). The 4.7THz array has successfully flown using two separate quantum-cascade laser local oscillators from two different groups. NASA completed the development, integration and testing of a dual-channel closed-cycle cryocooler system, with two independently operable He compressors, aboard SOFIA in early 2017 and since then, both arrays can be operated in parallel using a frequency separating dichroic mirror. This configuration is now the prime GREAT configuration and has been added to SOFIA’s instrument suite since observing cycle 6.
Known and novel techniques are described to implement a Fast Fourier Transform (FFT) in hardware, such that parallelized data can be processed. The usage of both - real and imaginary FFT-input - can help saving hardware. Based on the different techniques, flexible to use FFT-implementations have been developed by combining standard FFT-components (partly IP) and are compared, according to their hardware utilization. Finally, applicability has been demonstrated in practice by a FFTimplementation with 8192 channels as part of a FPGAspectrometer with a total bandwidth of 1.5 GHz.
Kinetic Inductance Detectors with Integrated Antennas for Ground and Space-Based Sub-mm Astronomy
(2009)
Very large arrays of Microwave Kinetic Inductance Detectors (MKIDs) have the potential to revolutionize ground and space based astronomy. They can offer in excess of 10.000 pixels with large dynamic range and very high sensitivity in combination with very efficient frequency division multiplexing at GHz frequencies. In this paper we present the development of a 400 pixel MKID demonstration array, including optical coupling, sensitivity measurements, beam pattern measurements and readout. The design presented can be scaled to any frequency between 80 GHz and >5 THz because there is no need for superconducting structures that become lossy at frequencies above the gap frequency of the materials used. The latter would limit the frequency coverage to below 1 THz for relatively high gap materials such as NbTiN. An individual pixels of the array consist of a distributed Aluminium CPW MKID with an integrated twin slot antenna at its end. The antenna is placed in the in the second focus of an elliptical high purity Si lens. The lens-antenna coupling design allows room for the MKID resonator outside of the focal point of the lens. The best dark noise equivalent power of these devices is measured to be NEP = 7×10-19 W/[square root]Hz and the optical coupling efficiency is around 30%, in which no antireflection coating was used on the Si lens. For the readout we use a commercial arbitrary waveform generator and a 1.5 GHz FFTS. We show that using this concept it is possible to read out in excess of 400 pixels with 1 board and 1 pair of coaxial cables.
GREAT, the German REceiver for Astronomy at THz frequencies, has successfully passed its pre-shipment acceptance review conducted by DLR and NASA on December 4-5, 2008. Shipment to DAOF/Palmdale, home of the SOFIA observatory, has been released; airworthiness was stated by NASA. Since, due to schedule slips on the SOFIA project level, first science flights with GREAT were delayed to mid 2010. Here we present GREAT’s short science flight configuration: two heterodyne channels will be operated simultaneously in the frequency ranges of 1.25-1.50 and 1.82-1.91 THz, respectively, driven by solid-state type local oscillator systems, and supported by a wide suite of back-ends. The receiver was extensively tested for about 6 month in the MPIfR labs, showing performances compliant with specifications. This short science configuration will be available to the interested SOFIA user communities in collaboration with the GREAT PI team during SOFIA’s upcoming Basic Science flights.
We review the development of our digital broadband Fast Fourier Transform Spectrometers (FFTS). In just a few years, FFTS back-ends - optimized for a wide range of radio astronomical applications - have become a new standard for heterodyne receivers, particularly in the mm and sub-mm wavelength range. They offer high instantaneous bandwidths with many thousands spectral channels on a small electronic board (100 x 160 mm). Our FFT spectrometer make use of the latest versions of GHz analog-to-digital converters (ADC) and the most complex field programmable gate array (FPGA) chips commercially available today. These state-of-the-art chips have made possible to build digital spectrometers with instantaneous bandwidths up to 1.8 GHz and 8192 spectral channels.
Context.We present the technology and first scientific results of a new generation of very flexible and sensitive spectrometers, well-suited for the needs of spectral-line radio and (sub)millimeter astronomy: Fast Fourier Transform Spectrometers (FFTS), which are in operation at the Atacama Pathfinder EXperiment (APEX) telescope.
Aims. The FFTS for APEX is a novel high-resolution 2 x 1 GHz bandwidth digital spectrometer backend. Due to its high frequency resolution, and the demonstrated capability of operating at high altitude, the FFTS became the facility spectrometer for spectral line observations at APEX.
Methods. The FFTS is based on one of the currently most powerful digitizer/analyzer boards available from Acqiris, Switzerland. The board incorporates two 1 Gsamples/s analog-to-digital converters (ADCs) with 8-bit resolution which feed an on-board complex field programmable gate array (FPGA) chip. The enormous processing power by today's FPGAs allow for a complete real-time FFT signal processing pipeline to decompose a 1 GHz band into 16 384 spectral channels in just one chip.
Results. Since May 2005 an MPIfR FFTS has been extensively used in all regular spectroscopic science observations. The performance at APEX was demonstrated to be very reliable and as good as measured in the first laboratory tests which finally led to the request to provide a second, facility type FFTS for APEX. The unit was delivered and commissioned in March this year.
Conclusions. Using a commercially available digitizer board, it was possible to develop a complete FFTS in only a few months. Successful observations at APEX demonstrate that this new generation of FPGA-based spectrometers easily matching and superseding the performance of older technology spectrometers and can built up much more easily. Furthermore, the by now available class of new high-speed ADCs and the continuous increase of FPGA processing power makes it very likely that FFTS can be pushed to broader bandwidth and even more spectral channels in the near future.
We present our second generation of broadband Fast Fourier Transform Spectrometer (FFTS), optimized for a wide range of radio astronomical applications. The new digitizer and analyzer boards make use of the latest versions of GHz analogto-digital converters and the most complex field programmable gate array chips commercially available today. These state-ofthe-art chips have made possible to build digital spectrometers with instantaneous bandwidths up to 1.8 GHz and 8192 spectral channels.
Using the Atacama Pathfinder Experiment (APEX) telescope, we have detected the rotational ground-state transitions of ortho-ammonia and ortho-water toward the redshift 0.89 absorbing galaxy in the PKS 1830-211 gravitational lens system. We discuss our observations in the context of recent space-borne data obtained for these lines with the SWAS and Odin satellites toward Galactic sources. We find commonalities, but also significant differences between the interstellar media in a galaxy at intermediate redshift and in the Milky Way. Future high-quality observations of the ground-state ammonia transition in PKS 1830-211, together with inversion line data, will lead to strong constraints on the variation in the proton to electron mass ratio over the past 7.2 Gyr.
Microwave Kinetic Inductance Detectors have great potential for large very sensitive detector arrays for use in, for example, ground and spaced based sub?mm imaging. Being intrinsically readout in the frequency domain, they are particularly suited for frequency domain multiplexing allowing 1000s of devices to be readout with one pair of coaxial cables. However, this moves the complexity of the detector from the cryogenics to the warm electronics. We present the use of a readout based on a Fast Fourier transform Spectrometer, showing no deterioration of the noise performance compared to low noise analog mixing while allowing high multiplexing ratios (>100). We present use of this technique to multiplex 44 MKIDs, while this and similar setups are regularly now being used in our array development. This development will help the realization of large cameras, particularly in the short term for ground based astronomy.
Radio pulsars in relativistic binary systems are unique tools to study the curved space-time around massive compact objects. The discovery of a pulsar closely orbiting the super-massive black hole at the centre of our Galaxy, Sgr A⋆, would provide a superb test-bed for gravitational physics. To date, the absence of any radio pulsar discoveries within a few arc minutes of Sgr A⋆ has been explained by one principal factor: extreme scattering of radio waves caused by inhomogeneities in the ionized component of the interstellar medium in the central 100 pc around Sgr A⋆. Scattering, which causes temporal broadening of pulses, can only be mitigated by observing at higher frequencies. Here we describe recent searches of the Galactic centre region performed at a frequency of 18.95 GHz with the Effelsberg radio telescope.
Simultaneous multifrequency radio observations of the Galactic Centre magnetar SGR J1745-2900
(2015)
We report the status of a search for pulsars in the Galactic Centre, using a completely revised and improved high-sensitivity doublehorn system at 4.85-GHz. We also present calculations about the success rate of periodicity searches for such a survey, showing that in contrast to conclusions in recent literature pulsars can be indeed detected at the chosen search frequency.
We discuss our recent discovery of the giant radio emission from the Crab pulsar at its high frequency components (HFCs) phases and show the polarization characteristic of these pulses. This leads us to a suggestion that there is no difference in the emission mechanism of the main pulse (MP), interpulse (IP) and HFCs. We briefly review the size distributions of the Crab giant radio pulses (GRPs) and discuss general characteristics of the GRP phenomenon in the Crab and other pulsars.