Refine
H-BRS Bibliography
- yes (7)
Departments, institutes and facilities
Document Type
- Conference Object (5)
- Report (1)
- Working Paper (1)
Has Fulltext
- yes (7)
Keywords
- AOD (2)
- COD (2)
- Distribution grid management (2)
- Energiemeteorologie (2)
- Erzeugungsprognose (2)
- Inversion (2)
- Photovoltaik (2)
- Reflektanz (2)
- Satellitenprodukte (2)
- Si reference cells (2)
Anhand detaillierter Netzanalysen für ein reales Mittelspannungsnetzgebiet konnte gezeigt werden, dass sowohl die Einbindung von Prognosedaten auf Basis von Satelliten und Wetterdaten, als auch die Verbesserung von Folgetagsprognosen auf der Basis numerischer Wettermodelle einen deutlichen Mehrwert für ein prognosebasiertes Engpassmanagement bzw. Redispatch und Blindleistungsmanagement im Verteilnetz aufweisen. Auch Kurzfristprognosen auf der Basis von Satellitendaten haben einen positiven Effekt. Ein weiterer wichtiger Mehrwert des Projektes ist auch die Rückmeldung der kritischen Prognosesituationen aus Sicht der Anwendungsfälle, so dass wie bereits im Projekt gezeigt und darüber hinaus, Prognosen zielgerichteter auf die Anwendung im Verteilnetzbetrieb ausgelegt und optimiert werden können.
Weiterhin konnten Prognoseverbesserungen für das Vorhersagemodell des Deutschen Wetterdienstes durch die Assimilation von sichtbaren Satellitenbildern erreicht werden. Darüber hinaus wurden Wolken- und Strahlungsprodukte aus Satelliten verbessert und somit die Datenbasis für die Kurzfristprognose als auch für die Assimilation.
Darüber hinaus wurden verschiedene Methoden entwickelt, die zukünftig zu einer weiteren Prognoseverbesserung, insbesondere für Wettersituationen mit hohen Prognosefehlern, führen könnten. Solche Situationen wurden aus Sicht des Netzbetriebs und mithilfe von satellitenbasierten Analysen der Gesamtwetterlage für die Perioden der MetPVNet Messkampagnen identifiziert. Hierbei handelte es sich insbesondere um Situationen mit starker oder stark wechselhafter Bewölkung.
Für die MetPVNet Messkampagnen wurde auf der Basis eines Trainingsdatensatzes und in Abhängigkeit der Variabilitätsklasse die Abweichung der bodennahen Einstrahlung von Satellitendaten oder von Strahlungsprognosen quantifiziert. Diese Art der Informationen bietet zukünftig die Möglichkeit zur Bewertung der Prognosegüte.
In the research project "MetPVNet", both, the forecast-based operation management in distribution grids and as well as the forecasts of the feed-in of PV-power from decentralized plants could be improved on the basis of satellite data and numerical weather forecasts. Based on a detailed network analyses for a real medium-voltage grid area, it was shown that both – the integration of forecast data based on satellite and weather data and the improvement of subsequent day forecasts based on numerical weather models – have a significant added value for forecast-based congestion management or redispatch and reactive power management in the distribution grid. Furthermore, forecast improvements for the forecast model of the German Weather Service were achieved by assimilating visible satellite imagery, and cloud and radiation products from satellites were improved, thus improving the database for short-term forecasting as well as for assimilation. In addition, several methods have been developed that will enable forecast improvement in the future, especially for weather situations with high cloud induced variability and high forecast errors. This article summarizes the most important project results.
Reliable and regional differentiated power forecasts are required to guarantee an efficient and economic energy transition towards renewable energies. Amongst other renewable energy technologies, e.g. wind mills, photovoltaic systems are an essential component of this transition being cost-efficient and simply to install. Reliable power forecasts are however required for a grid integration of photovoltaic systems, which among other data requires high-resolution spatio-temporal global irradiance data. Hence the generation of robust reviewed global irradiance data is an essential contribution for the energy transition.
The electricity grid of the future will be built on renewable energy sources, which are highly variable and dependent on atmospheric conditions. In power grids with an increasingly high penetration of solar photovoltaics (PV), an accurate knowledge of the incoming solar irradiance is indispensable for grid operation and planning, and reliable irradiance forecasts are thus invaluable for energy system operators. In order to better characterise shortwave solar radiation in time and space, data from PV systems themselves can be used, since the measured power provides information about both irradiance and the optical properties of the atmosphere, in particular the cloud optical depth (COD). Indeed, in the European context with highly variable cloud cover, the cloud fraction and COD are important parameters in determining the irradiance, whereas aerosol effects are only of secondary importance.
The rapid increase in solar photovoltaic (PV) installations worldwide has resulted in the electricity grid becoming increasingly dependent on atmospheric conditions, thus requiring more accurate forecasts of incoming solar irradiance. In this context, measured data from PV systems are a valuable source of information about the optical properties of the atmosphere, in particular the cloud optical depth (COD). This work reports first results from an inversion algorithm developed to infer global, direct and diffuse irradiance as well as atmospheric optical properties from PV power measurements, with the goal of assimilating this information into numerical weather prediction (NWP) models.
Photovoltaic (PV) power data are a valuable but as yet under-utilised resource that could be used to characterise global irradiance with unprecedented spatio-temporal resolution. The resulting knowledge of atmospheric conditions can then be fed back into weather models and will ultimately serve to improve forecasts of PV power itself. This provides a data-driven alternative to statistical methods that use post-processing to overcome inconsistencies between ground-based irradiance measurements and the corresponding predictions of regional weather models (see for instance Frank et al., 2018). This work reports first results from an algorithm developed to infer global horizontal irradiance as well as atmospheric optical properties such as aerosol or cloud optical depth from PV power measurements.
Renewable energies play an increasingly important role for energy production in Europe. Unlike coal or gas powerplants, solar energy production is highly variable in space and time. This is due to the strong variability of cloudsand their influence on the surface solar irradiance. Especially in regions with large contribution from photovoltaicpower production, the intermittent energy feed-in to the power grid can be a risk for grid stability. Therefore goodforecasts of temporal and spatial variability of surface irradiance are necessary to be able to properly regulate thepower supply.