Refine
Departments, institutes and facilities
Document Type
- Conference Object (9)
- Article (2)
- Part of a Book (2)
- Doctoral Thesis (1)
Keywords
The Fitness-Fatigue model (Calvert et al. 1976) is widely used for performance analysis. This antagonistic model is based on a fitness-term, a fatigue-term, and an initial basic level of performance. Instead of generic parameter values, individualizing the model needs a fitting of parameters. With fitted parameters, the model adapts to account for individual responses to strain. Even though in most cases fitting of recorded training data shows useful results, without modification the model cannot be simply used for prediction.
Eine Überprüfung der Leistungsentwicklung im Radsport geht bis heute mit der Durchführung einer spezifischen Leistungsdiagnostik unter Verwendung vorgegebener Testprotokolle einher. Durch die zwischenzeitlich stark gestiegene Popularität von »wearable devices« ist es gleichzeitig heutzutage sehr einfach, die Herzfrequenz im Alltag und bei sportlichen Aktivitäten aufzuzeichnen. Doch eine geeignete Modellierung der Herzfrequenz, die es ermöglicht, Rückschlüsse über die Leistungsentwicklung ziehen zu können, fehlt bislang. Die Herzfrequenzaufzeichnungen in Kombination mit einer phänomenologisch interpretierbaren Modellierung zu nutzen, um auf möglichst direkte Weise und ohne spezifische Anforderungen an die Trainingsfahrten Rückschlüsse über die Leistungsentwicklung ziehen zu können, bietet die Chance, sowohl im professionellen Radsport wie auch in der ambitionierten Radsportpraxis den Erkenntnisgewinn über die eigene Leistungsentwicklung maßgeblich zu vereinfachen. In der vorliegenden Arbeit wird ein neuartiges und phänomenologisch interpretierbares Modell zur Simulation und Prädiktion der Herzfrequenz beim Radsport vorgestellt und im Rahmen einer empirischen Studie validiert. Dieses Modell ermöglicht es, die Herzfrequenz (sowie andere Beanspruchungsparameter aus Atemgasanalysen) mit adäquater Genauigkeit zu simulieren und bei vorgegebener Wattbelastung zu prognostizieren. Weiterhin wird eine Methode zur Reduktion der Anzahl der kalibrierbaren freien Modellparameter vorgestellt und in zwei empirischen Studien validiert. Nach einer individualisierten Parameterreduktion kann das Modell mit lediglich einem einzigen freien Parameter verwendet werden. Dieser verbleibende freie Parameter bietet schließlich die Möglichkeit, im zeitlichen Verlauf mit dem Verlauf der Leistungsentwicklung verglichen zu werden. In zwei unterschiedlichen Studien zeigt sich, dass der freie Modellparameter grundsätzlich in der Lage zu sein scheint, den Verlauf der Leistungsentwicklung über die Zeit abzubilden.
Analyzing training performance in sport is usually based on standardized test protocols and needs laboratory equipment, e.g., for measuring blood lactate concentration or other physiological body parameters. Avoiding special equipment and standardized test protocols, we show that it is possible to reach a quality of performance simulation comparable to the results of laboratory studies using training models with nothing but training data. For this purpose, we introduce a fitting concept for a performance model that takes the peculiarities of using training data for the task of performance diagnostics into account. With a specific way of data preprocessing, accuracy of laboratory studies can be achieved for about 50% of the tested subjects, while lower correlation of the other 50% can be explained.
With the increasing average age of the population in many developed countries, afflictions like cardiovascular diseases have also increased. Exercising has a proven therapeutic effect on the cardiovascular system and can counteract this development. To avoid overstrain, determining an optimal training dose is crucial. In previous research, heart rate has been shown to be a good measure for cardiovascular behavior. Hence, prediction of the heart rate from work load information is an essential part in models used for training control. Most heart-rate-based models are described in the context of specific scenarios, and have been evaluated on unique datasets only. In this paper, we conduct a joint evaluation of existing approaches to model the cardiovascular system under a certain strain, and compare their predictive performance. For this purpose, we investigated some analytical models as well as some machine learning approaches in two scenarios: prediction over a certain time horizon into the future, and estimation of the relation between work load and heart rate over a whole training session.
During exercise, heart rate has proven to be a good measure in planning workouts. It is not only simple to measure but also well understood and has been used for many years for workout planning. To use heart rate to control physical exercise, a model which predicts future heart rate dependent on a given strain can be utilized. In this paper, we present a mathematical model based on convolution for predicting the heart rate response to strain with four physiologically explainable parameters. This model is based on the general idea of the Fitness-Fatigue model for performance analysis, but is revised here for heart rate analysis. Comparisons show that the Convolution model can compete with other known heart rate models. Furthermore, this new model can be improved by reducing the number of parameters. The remaining parameter seems to be a promising indicator of the actual subject’s fitness.
The use of wearable devices or “wearables” in the physical activity domain has been increasing in the last years. These devices are used as training tools providing the user with detailed information about individual physiological responses and feedback to the physical training process. Advantages in sensor technology, miniaturization, energy consumption and processing power increased the usability of these wearables. Furthermore, available sensor technologies must be reliable, valid, and usable. Considering the variety of the existing sensors not all of them are suitable to be integrated in wearables. The application and development of wearables has to consider the characteristics of the physical training process to improve the effectiveness and efficiency as training tools. During physical training, it is essential to elicit individual optimal strain to evoke the desired adjustments to training. One important goal is to neither overstrain nor under challenge the user. Many wearables use heart rate as indicator for this individual strain. However, due to a variety of internal and external influencing factors, heart rate kinetics are highly variable making it difficult to control the stress eliciting individually optimal strain. For optimal training control it is essential to model and predict individual responses and adapt the external stress if necessary. Basis for this modeling is the valid and reliable recording of these individual responses. Depending on the heart rate kinetics and the obtained physiological data, different models and techniques are available that can be used for strain or training control. Aim of this review is to give an overview of measurement, prediction, and control of individual heart rate responses. Therefore, available sensor technologies measuring the individual heart rate responses are analyzed and approaches to model and predict these individual responses discussed. Additionally, the feasibility for wearables is analyzed.
In mathematical modeling by means of performance models, the Fitness-Fatigue Model (FF-Model) is a common approach in sport and exercise science to study the training performance relationship. The FF-Model uses an initial basic level of performance and two antagonistic terms (for fitness and fatigue). By model calibration, parameters are adapted to the subject’s individual physical response to training load. Although the simulation of the recorded training data in most cases shows useful results when the model is calibrated and all parameters are adjusted, this method has two major difficulties. First, a fitted value as basic performance will usually be too high. Second, without modification, the model cannot be simply used for prediction. By rewriting the FF-Model such that effects of former training history can be analyzed separately – we call those terms preload – it is possible to close the gap between a more realistic initial performance level and an athlete's actual performance level without distorting other model parameters and increase model accuracy substantially. Fitting error of the preload-extended FF-Model is less than 32% compared to the error of the FF-Model without preloads. Prediction error of the preload-extended FF-Model is around 54% of the error of the FF-Model without preloads.