Volltext-Downloads (blau) und Frontdoor-Views (grau)

The M1 and pre-M1 segments contribute differently to ion selectivity in ASICs and ENaCs

  • The ability to discriminate between different ionic species, termed ion selectivity, is a key feature of ion channels and forms the basis for their physiological function. Members of the degenerin/epithelial sodium channel (DEG/ENaC) superfamily of trimeric ion channels are typically sodium selective, but to a surprisingly variable degree. While acid-sensing ion channels (ASICs) are weakly sodium selective (sodium:potassium around 10:1), ENaCs show a remarkably high preference for sodium over potassium (>500:1). The most obvious explanation for this discrepancy may be expected to originate from differences in the pore-lining second transmembrane segment (M2). However, these show a relatively high degree of sequence conservation between ASICs and ENaCs and previous functional and structural studies could not unequivocally establish that differences in M2 alone can account for the disparate degrees of ion selectivity. By contrast, surprisingly little is known about the contributions of the first transmembrane segment (M1) and the preceding pre-M1 region. In this study, we use conventional and non-canonical amino acid-based mutagenesis in combination with a variety of electrophysiological approaches to show that the pre-M1 and M1 regions of mASIC1a channels are major determinants of ion selectivity. Mutational investigations of the corresponding regions in hENaC show that they contribute less to ion selectivity, despite affecting ion conductance. In conclusion, our work supports the notion that the remarkably different degrees of sodium selectivity in ASICs and ENaCs are achieved through different mechanisms. The results further highlight how M1 and pre-M1 are likely to differentially affect pore structure in these related channels.

Export metadata

Additional Services

Search Google Scholar Check availability


Show usage statistics
Document Type:Preprint
Author:Zeshan P. Sheikh, Matthias Wulf, Søren Friis, Mike Althaus, Timothy Lynagh, Stephan A. Pless
Number of pages:43
Date of first publication:2021/02/16
Copyright:The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Departments, institutes and facilities:Fachbereich Angewandte Naturwissenschaften
Dewey Decimal Classification (DDC):5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Entry in this database:2021/08/04