Volltext-Downloads (blau) und Frontdoor-Views (grau)

Object Detection in Dense Volume Data

  • This project focuses on object detection in dense volume data. There are several types of dense volume data, namely Computed Tomography (CT) scan, Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI). This work focuses on CT scans. CT scans are not limited to the medical domain; they are also used in industries. CT scans are used in airport baggage screening, assembly lines, and the object detection systems in these places should be able to detect objects fast. One of the ways to address the issue of computational complexity and make the object detection systems fast is to use low-resolution images. Low-resolution CT scanning is fast. The entire process of scanning and detection can be made faster by using low-resolution images. Even in the medical domain, to reduce the rad iation dose, the exposure time of the patient should be reduced. The exposure time of patients could be reduced by allowing low-resolution CT scans. Hence it is essential to find out which object detection model has better accuracy as well as speed at low-resolution CT scans. However, the existing approaches did not provide details about how the model would perform when the resolution of CT scans is varied. Hence in this project, the goal is to analyze the impact of varying resolution of CT scans on both the speed and accuracy of the model. Three object detection models, namely RetinaNet, YOLOv3, and YOLOv5, were trained at various resolutions. Among the three models, it was found that YOLOv5 has the best mAP and f1 score at multiple resolutions on the DeepLesion dataset. RetinaNet model h as the least inference time on the DeepLesion dataset. From the experiments, it could be asserted that sacrificing mean average precision (mAP) to improve inference time by reducing resolution is feasible.

Export metadata

Additional Services

Search Google Scholar Check availability


Show usage statistics
Document Type:Master's Thesis
Author:Ramit Sharma
Number of pages:80
Referee:Paul G. Plöger, Ernst Kruijff
Contributing Corporation:Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Date of first publication:2022/01/27
Dewey Decimal Classification (DDC):0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Theses, student research papers:Hochschule Bonn-Rhein-Sieg / Fachbereich Informatik
Entry in this database:2022/11/15