Institut für Technik, Ressourcenschonung und Energieeffizienz (TREE)
Refine
Department, Institute
- Institut für Technik, Ressourcenschonung und Energieeffizienz (TREE) (278)
- Fachbereich Elektrotechnik, Maschinenbau, Technikjournalismus (165)
- Fachbereich Angewandte Naturwissenschaften (75)
- Fachbereich Informatik (52)
- Internationales Zentrum für Nachhaltige Entwicklung (IZNE) (18)
- Institute of Visual Computing (IVC) (4)
- Fachbereich Wirtschaftswissenschaften (3)
- Graduierteninstitut (3)
- Institut für funktionale Gen-Analytik (IFGA) (3)
- Zentrum für Innovation und Entwicklung in der Lehre (2)
Document Type
- Conference Object (139)
- Article (96)
- Part of a Book (18)
- Preprint (9)
- Report (6)
- Doctoral Thesis (3)
- Book (2)
- Part of Periodical (2)
- Contribution to a Periodical (1)
- Other (1)
Year of publication
Keywords
- lignin (7)
- stem cells (5)
- Biomass (3)
- Crystallinity (3)
- Extrusion blow molding (3)
- Force field (3)
- Lignin (3)
- MAP-Elites (3)
- Molecular dynamics (3)
- Numerical optimization (3)
Off-lattice Boltzmann methods increase the flexibility and applicability of lattice Boltzmann methods by decoupling the discretizations of time, space, and particle velocities. However, the velocity sets that are mostly used in off-lattice Boltzmann simulations were originally tailored to on-lattice Boltzmann methods. In this contribution, we show how the accuracy and efficiency of weakly and fully compressible semi-Lagrangian off-lattice Boltzmann simulations is increased by velocity sets derived from cubature rules, i.e. multivariate quadratures, which have not been produced by the Gauss-product rule. In particular, simulations of 2D shock-vortex interactions indicate that the cubature-derived degree-nine D2Q19 velocity set is capable to replace the Gauss-product rule-derived D2Q25. Likewise, the degree-five velocity sets D3Q13 and D3Q21, as well as a degree-seven D3V27 velocity set were successfully tested for 3D Taylor-Green vortex flows to challenge and surpass the quality of the customary D3Q27 velocity set. In compressible 3D Taylor-Green vortex flows with Mach numbers Ma={0.5;1.0;1.5;2.0} on-lattice simulations with velocity sets D3Q103 and D3V107 showed only limited stability, while the off-lattice degree-nine D3Q45 velocity set accurately reproduced the kinetic energy provided by literature.
Ghana suffers from frequent power outages, which can be compensated by off-grid energy solutions. Photovoltaic-hybrid systems become more and more important for rural electrification due to their potential to offer a clean and cost-effective energy supply. However, uncertainties related to the prediction of electrical loads and solar irradiance result in inefficient system control and can lead to an unstable electricity supply, which is vital for the high reliability required for applications within the health sector. Model predictive control (MPC) algorithms present a viable option to tackle those uncertainties compared to rule-based methods, but strongly rely on the quality of the forecasts. This study tests and evaluates (a) a seasonal autoregressive integrated moving average (SARIMA) algorithm, (b) an incremental linear regression (ILR) algorithm, (c) a long short-term memory (LSTM) model, and (d) a customized statistical approach for electrical load forecasting on real load data of a Ghanaian health facility, considering initially limited knowledge of load and pattern changes through the implementation of incremental learning. The correlation of the electrical load with exogenous variables was determined to map out possible enhancements within the algorithms. Results show that all algorithms show high accuracies with a median normalized root mean square error (nRMSE) <0.1 and differing robustness towards load-shifting events, gradients, and noise. While the SARIMA algorithm and the linear regression model show extreme error outliers of nRMSE >1, methods via the LSTM model and the customized statistical approaches perform better with a median nRMSE of 0.061 and stable error distribution with a maximum nRMSE of <0.255. The conclusion of this study is a favoring towards the LSTM model and the statistical approach, with regard to MPC applications within photovoltaic-hybrid system solutions in the Ghanaian health sector.
Turbulent compressible flows are traditionally simulated using explicit Eulerian time integration applied to the Navier-Stokes equations. However, the associated Courant-Friedrichs-Lewy condition severely restricts the maximum time step size. Exploiting the Lagrangian nature of the Boltzmann equation's material derivative, we now introduce a feasible three-dimensional semi-Lagrangian lattice Boltzmann method (SLLBM), which elegantly circumvents this restriction. Previous lattice Boltzmann methods for compressible flows were mostly restricted to two dimensions due to the enormous number of discrete velocities needed in three dimensions. In contrast, this Rapid Communication demonstrates how cubature rules enhance the SLLBM to yield a three-dimensional velocity set with only 45 discrete velocities. Based on simulations of a compressible Taylor-Green vortex we show that the new method accurately captures shocks or shocklets as well as turbulence in 3D without utilizing additional filtering or stabilizing techniques, even when the time step sizes are up to two orders of magnitude larger compared to simulations in the literature. Our new method therefore enables researchers for the first time to study compressible turbulent flows by a fully explicit scheme, whose range of admissible time step sizes is only dictated by physics, while being decoupled from the spatial discretization.
Medien spielen eine Schlüsselrolle für die öffentliche Meinung und Akzeptanz neuer Technologien. Mit einer qualitativen Inhaltsanalyse journalistischer Artikel zum Elektrofahrrad wurden Akteure und ihre Einstellungen und Handlungen in Bezug auf das Elektrofahrrad untersucht. In die Analyse flossen 444 Artikel ausgewählter deutscher Qualitätsmedien aus dem Jahr 2018 ein. Die Untersuchung zeigt den gesellschaftlich relevanten Diskurs über Elektrofahrräder auf und bietet Anknüpfungspunkte für die Förderung von Individualmobilität und der Entwicklung zukunftsfähiger Mobilitätskonzepte.
Bionik
(2020)
Wie machen die das… kann angesichts der erstaunlichen Fähigkeiten mancher Lebewesen gefragt werden. Die Bionik fragt noch weiter …und wie kann man das nachmachen? Hier liegt ein Schwerpunkt dieses Lehrbuches, das die Bionik nicht nur an zahlreichen Beispielen erklärt, sondern auch eine Vorgehensweise für die Identifizierung biologischer Lösungen und deren Übertragung auf technische Anwendungen vermittelt. Basisinformationen der Biologie und Grundlagen der Konstruktionstechnik gewährleisten einen leichten Zugang zum Stoff. Mit dem 3D-Druck als Schlüsseltechnologie und der Thematisierung der Nachhaltigkeit geht das Buch zudem auf aktuelle Entwicklungen ein. Dieser ganzheitliche Blick auf die Bionik soll den Leser zur Durchführung bionischer Projekte befähigen und motivieren. (Verlagsangaben)
This paper addresses long-term historical changes in solar irradiance in West Africa (3 to 20° N and 20° W to 16° E) and the implications for photovoltaic systems. Here, we use satellite irradiance (Surface Solar Radiation Data Set – Heliosat, Edition 2.1 – SARAH-2.1) and temperature data from a reanalysis (ERA5) to derive photovoltaic yields. Based on 35 years of data (1983–2017), the temporal and regional variability as well as long-term trends in global and direct horizontal irradiance are analyzed. Furthermore, a detailed time series analysis is undertaken at four locations. According to the high spatial resolution SARAH-2.1 data record (0.05°×0.05°), solar irradiance is largest (up to a 300 W m−2 daily average) in the Sahara and the Sahel zone with a positive trend (up to 5 W m−2 per decade) and a lower temporal variability (<75 W m−2 between 1983 and 2017 for daily averages). In contrast, the solar irradiance is lower in southern West Africa (between 200 W m−2 and 250 W m−2) with a negative trend (up to −5 W m−2 per decade) and a higher temporal variability (up to 150 W m−2). The positive trend in the north is mostly connected to the dry season, whereas the negative trend in the south occurs during the wet season. Both trends show 95 % significance. Photovoltaic (PV) yields show a strong meridional gradient with the lowest values of around 4 kWh kWp−1 in southern West Africa and values of more than 5.5 kWh kWp−1 in the Sahara and Sahel zone.
Background: Coniferous woods (Abies nordmanniana (Stev.) Spach, Abies procera Rehd, Picea abies (L.) H.Karst, and Picea pungens Engelm.) could contain useful secondary metabolites to produce sustainable packaging materials, e.g., by substitution of harmful petrol-based additives in plastic packaging. This study aims to characterise the antioxidant and light-absorbing properties and ingredients of different coniferous wood extracts with regard to different plant fragments and drying conditions. Furthermore, the valorisation of used Christmas trees is evaluated. Methods: Different drying and extraction techniques were applied with the extracts being characterised by determining the total phenolic content (TPC), total antioxidant capacity (TAC), and absorbance in the ultraviolet range (UV). Gas chromatography coupled with mass spectrometry (GC-MS) and an acid–butanol assay (ABA) were used to characterise the extract constituents. Results: All the extracts show a considerably high UV absorbance while interspecies differences did occur. All the fresh and some of the dried biomass extracts reached utilisable TAC and TPC values. A simplified extraction setup for industrial application is evaluated; comparable TAC results could be reached with modifications. Conclusion: Coniferous woods are a promising renewable resource for preparation of sustainable antioxidants and photostabilisers. This particularly applies to Christmas trees used for up to 12 days. After extraction, the biomass can be fully valorised by incorporation in paper packaging.
The development of metals tailored to the metallurgical conditions of laser-based additive manufacturing is crucial to advance the maturity of these materials for their use in structural applications. While efforts in this regard are being carried out around the globe, the use of high strength eutectic alloys have, so far, received minor attention, although previous works showed that rapid solidification techniques can result in ultrafine microstructures with excellent mechanical performance, albeit for small sample sizes. In the present work, a eutectic Ti-32.5Fe alloy has been produced by laser powder bed fusion aiming at exploiting rapid solidification and the capability to produce bulk ultrafine microstructures provided by this processing technique.
Process energy densities between 160 J/mm³ and 180 J/mm³ resulted in a dense and crack-free material with an oxygen content of ~ 0.45 wt.% in which a hierarchical microstructure is formed by µm-sized η-Ti4Fe2Ox dendrites embedded in an ultrafine eutectic β-Ti/TiFe matrix. The microstructure was studied three-dimensionally using near-field synchrotron ptychographic X-ray computed tomography with an actual spatial resolution down to 39 nm to analyse the morphology of the eutectic and dendritic structures as well as to quantify their mass density, size and distribution. Inter-lamellar spacings down to ~ 30–50 nm were achieved, revealing the potential of laser-based additive manufacturing to generate microstructures smaller than those obtained by classical rapid solidification techniques for bulk materials. The alloy was deformed at 600 °C under compressive loading up to a strain of ~ 30% without damage formation, resulting in a compressive yield stress of ~ 800 MPa.
This study provides a first demonstration of the feasibility to produce eutectic Ti-Fe alloys with ultrafine microstructures by laser powder bed fusion that are suitable for structural applications at elevated temperature.
The temperature of photovoltaic modules is modelled as a dynamic function of ambient temperature, shortwave and longwave irradiance and wind speed, in order to allow for a more accurate characterisation of their efficiency. A simple dynamic thermal model is developed by extending an existing parametric steady-state model using an exponential smoothing kernel to include the effect of the heat capacity of the system. The four parameters of the model are fitted to measured data from three photovoltaic systems in the Allgäu region in Germany using non-linear optimisation. The dynamic model reduces the root-mean-square error between measured and modelled module temperature to 1.58 K on average, compared to 3.03 K for the steady-state model, whereas the maximum instantaneous error is reduced from 20.02 to 6.58 K.
Technik wird in unserer Gesellschaft noch immer mit Männlichkeit assoziiert. Das Bild eines Mannes, der mit einer schweren Bohrmaschine arbeitet, erscheint uns vertrauter als das einer Frau, die dieselbe Tätigkeit ausführt. Derartige Repräsentationen von Technik und Geschlecht werden auch von den Medien verbreitet und könnten so bereits Mädchen und jungen Frauen den Zugang zu Technik erschweren. Digitalisierte Medienwelten bieten allerdings die Möglichkeit, neue Technik-Bilder zu entwerfen und dominante Vorstellungen dadurch zu verschieben. Hier könnten Öffentlichkeiten für Mädchen und Frauen entstehen, die eine Selbstverständigung über technische Interessen und damit einhergehend eine Erfahrung von Kompetenz vermitteln könnten. Anhand von fünf Gruppendiskussionen mit 12- bis 15-jährigen Gymnasiastinnen wurden deren Technikverständnis, deren Nutzung digitaler Medien zu Technikthemen, vor allem aber auch deren Ideen zu einer für sie attraktiven Vermittlung von Technikthemen erfragt. Dabei wurden insbesondere die Vorteile einer symmetrischen Kommunikation im Netz deutlich.
The encoding of solutions in black-box optimization is a delicate, handcrafted balance between expressiveness and domain knowledge between exploring a wide variety of solutions, and ensuring that those solutions are useful. Our main insight is that this process can be automated by generating a dataset of high-performing solutions with a quality diversity algorithm (here, MAP-Elites), then learning a representation with a generative model (here, a Varia-tional Autoencoder) from that dataset. Our second insight is that this representation can be used to scale quality diversity optimization to higher dimensions-but only if we carefully mix solutions generated with the learned representation and those generated with traditional variation operators. We demonstrate these capabilities by learning an low-dimensional encoding for the inverse kinemat-ics of a thousand joint planar arm. The results show that learned representations make it possible to solve high-dimensional problems with orders of magnitude fewer evaluations than the standard MAP-Elites, and that, once solved, the produced encoding can be used for rapid optimization of novel, but similar, tasks. The presented techniques not only scale up quality diversity algorithms to high dimensions, but show that black-box optimization encodings can be automatically learned, rather than hand designed.