540 Chemie und zugeordnete Wissenschaften
Refine
Departments, institutes and facilities
- Fachbereich Angewandte Naturwissenschaften (133)
- Institut für Technik, Ressourcenschonung und Energieeffizienz (TREE) (46)
- Fachbereich Elektrotechnik, Maschinenbau und Technikjournalismus (16)
- Fachbereich Informatik (15)
- Institut für Sicherheitsforschung (ISF) (7)
- Graduierteninstitut (5)
- Institut für Detektionstechnologien (IDT) (5)
- Institut für funktionale Gen-Analytik (IFGA) (4)
- Institute of Visual Computing (IVC) (2)
- Internationales Zentrum für Nachhaltige Entwicklung (IZNE) (1)
Document Type
- Article (135)
- Conference Object (29)
- Part of a Book (15)
- Book (monograph, edited volume) (9)
- Doctoral Thesis (7)
- Bachelor Thesis (4)
- Master's Thesis (4)
- Contribution to a Periodical (3)
- Patent (3)
- Conference Proceedings (2)
Year of publication
Keywords
- GC/MS (9)
- Lignin (6)
- Chemie (5)
- Analytical pyrolysis (4)
- Biomass (4)
- Corrosion inhibitors (3)
- Failure analysis (3)
- Lehrbuch (3)
- lignin (3)
- Antioxidant activity (2)
While many proteins are known clients of heat shock protein 90 (Hsp90), it is unclear whether the transcription factor, thyroid hormone receptor beta (TRb), interacts with Hsp90 to control hormonal perception and signaling. Higher Hsp90 expression in mouse fibroblasts was elicited by the addition of triiodothyronine (T3). T3 bound to Hsp90 and enhanced adenosine triphosphate (ATP) binding of Hsp90 due to a specific binding site for T3, as identified by molecular docking experiments. The binding of TRb to Hsp90 was prevented by T3 or by the thyroid mimetic sobetirome. Purified recombinant TRb trapped Hsp90 from cell lysate or purified Hsp90 in pull-down experiments. The affinity of Hsp90 for TRb was 124 nM. Furthermore, T3 induced the release of bound TRb from Hsp90, which was shown by streptavidin-conjugated quantum dot (SAv-QD) masking assay. The data indicate that the T3 interaction with TRb and Hsp90 may be an amplifier of the cellular stress response by blocking Hsp90 activity.
Nanomedicine strategies were first adapted and successfully translated to clinical application for diseases, such as cancer and diabetes. These strategies would no doubt benefit unmet diseases needs as in the case of leishmaniasis. The latter causes skin sores in the cutaneous form and affects internal organs in the visceral form. Treatment of cutaneous leishmaniasis (CL) aims at accelerating wound healing, reducing scarring and cosmetic morbidity, preventing parasite transmission and relapse. Unfortunately, available treatments show only suboptimal effectiveness and none of them were designed specifically for this disease condition. Tissue regeneration using nano-based devices coupled with drug delivery are currently being used in clinic to address diabetic wounds. Thus, in this review, we analyse the current treatment options and attempt to critically analyse the use of nanomedicine-based strategies to address CL wounds in view of achieving scarless wound healing, targeting secondary bacterial infection and lowering drug toxicity.
Process-induced changes in the morphology of biodegradable polybutylene adipate terephthalate (PBAT) and polylactic acid (PLA) blends modified with various multifunctional chainextending cross-linkers (CECLs) are presented. The morphology of unmodified and modified films produced with blown film extrusion is examined in an extrusion direction (ED) and a transverse direction (TD). While FTIR analysis showed only small peak shifts indicating that the CECLs modify the molecular weight of the PBAT/PLA blend, SEM investigations of the fracture surfaces of blown extrusion films revealed their significant effect on the morphology formed during the processing. Due to the combined shear and elongation deformation during blown film extrusion, rather spherical PLA islands were partly transformed into long fibrils, which tended to decay to chains of elliptical islands if cooled slowly. The CECL introduction into the blend changed the thickness of the PLA fibrils, modified the interface adhesion, and altered the deformation behavior of the PBAT matrix from brittle to ductile. The results proved that CECLs react selectively with PBAT, PLA, and their interface. Furthermore, the reactions of CECLs with PBAT/PLA induced by the processing depended on the deformation directions (ED and TD), thus resulting in further non-uniformities of blown extrusion films.
Cathepsin K (CatK) is a target for the treatment of osteoporosis, arthritis, and bone metastasis. Peptidomimetics with a cyanohydrazide warhead represent a new class of highly potent CatK inhibitors; however, their binding mechanism is unknown. We investigated two model cyanohydrazide inhibitors with differently positioned warheads: an azadipeptide nitrile Gü1303 and a 3-cyano-3-aza-β-amino acid Gü2602. Crystal structures of their covalent complexes were determined with mature CatK as well as a zymogen-like activation intermediate of CatK. Binding mode analysis, together with quantum chemical calculations, revealed that the extraordinary picomolar potency of Gü2602 is entropically favoured by its conformational flexibility at the nonprimed-primed subsites boundary. Furthermore, we demonstrated by live cell imaging that cyanohydrazides effectively target mature CatK in osteosarcoma cells. Cyanohydrazides also suppressed the maturation of CatK by inhibiting the autoactivation of the CatK zymogen. Our results provide structural insights for the rational design of cyanohydrazide inhibitors of CatK as potential drugs.
Vorrichtung (1) zur Bestimmung eines TOC-Gehalts in einer wässrigen Lösung, die folgendes aufweist:- zumindest eine Ozonquelle (8) zur Erzeugung von Ozon in der wässrigen Lösung;- zumindest eine Strahlungsquelle (9) zur Bestrahlung der wässrigen Lösung mit UV-Strahlung;- eine Einrichtung (15) zur Bestimmung der elektrischen Leitfähigkeit der ozonierten und bestrahlten wässrigen Lösung.
Ausführungsbeispiele schaffen eine Vorrichtung zur Desinfektion oder Sanitisierung zumindest eines Gegenstands. Die Vorrichtung umfasst einen Ozongenerator, der ausgebildet ist, um Ozon zu erzeugen und in einem Volumen freizusetzen. Ferner umfasst die Vorrichtung einen Ozonsensor, der ausgebildet ist, um eine Ozonkonzentration in dem Volumen zu messen. Ferner umfasst die Vorrichtung eine Steuereinrichtung, die konfiguriert ist, um den Ozongenerator anzusteuern Ozon zu erzeugen, so dass eine gemessene Ozonkonzentration für einen vorgegebenen Zeitraum bei einer vorgegebenen Ozonkonzentration oder innerhalb eines vorgegebenen Ozonkonzentrationsbereichs liegt, um in dem Volumen befindliche Gegenstände zu desinfizieren oder sanitisieren.
Hydrophilic surface-enhanced Raman spectroscopy (SERS) substrates were prepared by a combination of TiO2-coatings of aluminium plates through a direct titanium tetraisopropoxide (TTIP) coating and drop coated by synthesised gold nanoparticles (AuNPs). Differences between the wettability of the untreated substrates, the slowly dried Ti(OH)4 substrates and calcinated as well as plasma treated TiO2 substrates were analysed by water contact angle (WCA) measurements. The hydrophilic behaviour of the developed substrates helped to improve the distribution of the AuNPs, which reflects in overall higher lateral SERS enhancement. Surface enhancement of the substrates was tested with target molecule rhodamine 6G (R6G) and a fibre-coupled 638 nm Raman spectrometer. Additionally, the morphology of the substrates was characterised using scanning electron microscopy (SEM) and Raman microscopy. The studies showed a reduced influence of the coffee ring effect on the particle distribution, resulting in a more broadly distributed edge region, which increased the spatial reproducibility of the measured SERS signal in the surface-enhanced Raman mapping measurements on mm scale.
Cathepsin K (CatK) is a target for the treatment of osteoporosis, arthritis, and bone metastasis. Peptidomimetics with a cyanohydrazide warhead represent a new class of highly potent CatK inhibitors; however, their binding mechanism is unknown. We investigated two model cyanohydrazide inhibitors with differently positioned warheads: an azadipeptide nitrile Gü1303 and a 3-cyano-3-aza-β-amino acid Gü2602. Crystal structures of their covalent complexes were determined with mature CatK as well as a zymogen-like activation intermediate of CatK. Binding mode analysis, together with quantum chemical calculations, revealed that the extraordinary picomolar potency of Gü2602 is entropically favoured by its conformational flexibility at the nonprimed-primed subsites boundary. Furthermore, we demonstrated by live cell imaging that cyanohydrazides effectively target mature CatK in osteosarcoma cells. Cyanohydrazides also suppressed the maturation of CatK by inhibiting the autoactivation of the CatK zymogen. Our results provide structural insights for the rational design of cyanohydrazide inhibitors of CatK as potential drugs.
The white ground crater by the Phiale Painter (450–440 BC) exhibited in the “Pietro Griffo” Archaeological Museum in Agrigento (Italy) depicts two scenes from Perseus myth. The vase is of utmost importance to archaeologists because the figures are drawn on a white background with remarkable daintiness and attention to detail. Notwithstanding the white ground ceramics being well documented from an archaeological and historical point of view, doubts concerning the compositions of pigments and binders and the production technique are still unsolved. This kind of vase is a valuable rarity, the use of which is documented in elitist funeral rituals. The study aims to investigate the constituent materials and the execution technique of this magnificent crater. The investigation was carried out using non-destructive and non-invasive techniques in situ. Portable X-ray fluorescence and Fourier-transform total reflection infrared spectroscopy complemented the use of visible and ultraviolet light photography to get an overview and specific information on the vase. The XRF data were used to produce false colour maps showing the location of the various elements detected, using the program SmART_scan. The use of gypsum as the material for the white ground is an important result that deserves to be further investigated in similar vases.
The synthesis and characterization of a new class of 1,2,4-oxadiazolylpyridinium as a cationic scaffold for fluorinated ionic liquid crystals is herein described. A series of 12 fluorinated heterocyclic salts based on a 1,2,4-oxadiazole moiety, connected through its C(5) or C(3) to an N-alkylpyridinium unit and a perfluoroheptyl chain, differing in the length of the alkyl chain and counterions, has been synthesized. As counterions iodide, bromide and bis(trifluoromethane)sulfonimide have been considered. The synthesis, structure, and liquid crystalline properties of these compounds are discussed on the basis of the tuned structural variables. The thermotropic properties of this series of salts have been investigated by differential scanning calorimetry and polarized optical microscopy. The results showed the existence of an enantiotropic mesomorphic smectic liquid crystalline phase for six bis(trifluoromethane)sulfonimide salts.
The molecular weight properties of lignins are one of the key elements that need to be analyzed for a successful industrial application of these promising biopolymers. In this study, the use of 1H NMR as well as diffusion-ordered spectroscopy (DOSY NMR), combined with multivariate regression methods, was investigated for the determination of the molecular weight (Mw and Mn) and the polydispersity of organosolv lignins (n = 53, Miscanthus x giganteus, Paulownia tomentosa, and Silphium perfoliatum). The suitability of the models was demonstrated by cross validation (CV) as well as by an independent validation set of samples from different biomass origins (beech wood and wheat straw). CV errors of ca. 7–9 and 14–16% were achieved for all parameters with the models from the 1H NMR spectra and the DOSY NMR data, respectively. The prediction errors for the validation samples were in a similar range for the partial least squares model from the 1H NMR data and for a multiple linear regression using the DOSY NMR data. The results indicate the usefulness of NMR measurements combined with multivariate regression methods as a potential alternative to more time-consuming methods such as gel permeation chromatography.
Recent experimental evidence suggest that mebendazole, a popular antiparasitic drug, binds to heat shock protein 90 (Hsp90) and inhibit acute myeloid leukemia cell growth. In this study we use quantum mechanics (QM), molecular similarity and molecular dynamics (MD) calculations to predict possible binding poses of mebendazole to the adenosine triphosphate (ATP) binding site of Hsp90. Extensive conformational searches and minimization of the five tautomers of mebendazole using MP2/aug-cc-pVTZ theory level resulting in 152 minima being identified. Mebendazole-Hsp90 complex models were created using the QM optimized conformations and protein coordinates obtained from experimental crystal structures that were chosen through similarity calculations. Nine different poses were identified from a total of 600 ns of explicit solvent, all-atom MD simulations using two different force fields. All simulations support the hypothesis that mebendazole is able to bind to the ATP binding site of Hsp90.
This study investigates the effects of four multifunctional chain-extending cross-linkers (CECL) on the processability, mechanical performance, and structure of polybutylene adipate terephthalate (PBAT) and polylactic acid (PLA) blends produced using film blowing technology. The newly developed reference compound (M·VERA® B5029) and the CECL modified blends are characterized with respect to the initial properties and the corresponding properties after aging at 50 °C for 1 and 2 months. The tensile strength, seal strength, and melt volume rate (MVR) are markedly changed after thermal aging, whereas the storage modulus, elongation at the break, and tear resistance remain constant. The degradation of the polymer chains and crosslinking with increased and decreased MVR, respectively, is examined thoroughly with differential scanning calorimetry (DSC), with the results indicating that the CECL-modified blends do not generally endure thermo-oxidation over time. Further, DSC measurements of 25 µm and 100 µm films reveal that film blowing pronouncedly changes the structures of the compounds. These findings are also confirmed by dynamic mechanical analysis, with the conclusion that tris(2,4-di-tert-butylphenyl)phosphite barely affects the glass transition temperature, while with the other changes in CECL are seen. Cross-linking is found for aromatic polycarbodiimide and poly(4,4-dicyclohexylmethanecarbodiimide) CECL after melting of granules and films, although overall the most synergetic effect of the CECL is shown by 1,3-phenylenebisoxazoline.