Refine
Department, Institute
- Fachbereich Informatik (67)
- Fachbereich Angewandte Naturwissenschaften (66)
- Fachbereich Wirtschaftswissenschaften (60)
- Institut für Technik, Ressourcenschonung und Energieeffizienz (TREE) (47)
- Fachbereich Elektrotechnik, Maschinenbau, Technikjournalismus (38)
- Fachbereich Sozialpolitik und Soziale Sicherung (34)
- Institut für Verbraucherinformatik (IVI) (18)
- Institute of Visual Computing (IVC) (17)
- Institut für Sicherheitsforschung (ISF) (11)
- Institut für funktionale Gen-Analytik (IFGA) (11)
Document Type
- Article (99)
- Conference Object (73)
- Part of a Book (33)
- Book (20)
- Report (15)
- Preprint (10)
- Doctoral Thesis (8)
- Master's Thesis (6)
- Part of Periodical (6)
- Working Paper (3)
Year of publication
- 2019 (282) (remove)
Language
- English (170)
- German (110)
- Multiple languages (1)
- No linguistic content (1)
Is part of the Bibliography
- yes (282) (remove)
Keywords
- lignin (4)
- Lignin (3)
- Navigation (3)
- work engagement (3)
- Aminoacylase (2)
- Design (2)
- Drosophila (2)
- Exergame (2)
- Extrusion blow molding (2)
- FPGA (2)
Analytical pyrolysis
(2019)
Analytical pyrolysis deals with the structural identification and quantitation of pyrolysis products with the ultimate aim of establishing the identity of the original material and the mechanisms of its thermal decomposition. The pyrolytic process is carried out in a pyrolyzer interfaced with analytical instrumentation such as gas chromatography (GC), mass spectrometry (MS), gas chromatography coupled with mass spectrometry (GC/MS), or with Fourier-transform infrared spectroscopy (GC/FTIR). By measurement and identification of pyrolysis products, the molecular composition of the original sample can often be reconstructed.This book is the outcome of contributions by experts in the field of pyrolysis and includes applications of the analytical pyrolysis-GC/MS to characterize the structure of synthetic organic polymers and lignocellulosic materials as well as cellulosic pulps and isolated lignins, solid wood, waste particle board, and bio-oil. The thermal degradation of cellulose and biomass is examined by scanning electron micrography, FTIR spectroscopy, thermogravimetry (TG), differential thermal analysis, and TG/MS. The calorimetric determination of high heating values of different raw biomass, plastic waste, and biomass/plastic waste mixtures and their by-products resulting from pyrolysis is described.
Das YouTubiversum
(2019)
Mit YouTube hat sich im Internet eine Videoplattform etabliert, die einen eigenen subkulturellen Mikrokosmos darstellt und bei einigen, vor allem jüngeren Mediennutzergruppen eine starke Konkurrenz für das klassische Fernsehen darstellt. Neue Darstellungs- und Präsentationsformen, die Dialogisierung des Zuschauerkontakts und kreative Erlös- und Finanzierungsstrukturen haben YouTube zur Chiffre für Onlinevideo überhaupt gemacht.
Gas Chromatography
(2019)
Gas chromatography (GC) is one of the most important types of chromatography used in analytical chemistry for separating and analyzing chemical organic compounds. Today, gas chromatography is one of the most widespread investigation methods of instrumental analysis. This technique is used in the laboratories of chemical, petrochemical, and pharmaceutical industries, in research institutes, and also in clinical, environmental, and food and beverage analysis. This book is the outcome of contributions by experts in the field of gas chromatography and includes a short history of gas chromatography, an overview of derivatization methods and sample preparation techniques, a comprehensive study on pyrazole mass spectrometric fragmentation, and a GC/MS/MS method for the determination and quantification of pesticide residues in grape samples.
Förderpreise 2018
(2019)
Change - shaping reality
(2019)
This handbook contains lots of interesting information for international students about studying at H-BRS and living in the Rhineland.
TREE Jahresbericht 2018
(2019)
ITS Jahresbericht 2018
(2019)
Since power dissipation is becoming a significant issue and requiring more consideration in the early design stage, circuit designers must now be experienced in low-power techniques to enhance designing digital systems. Therefore, when teaching low-power design techniques in electrical and computer engineering education, a tool or a method must be made available that enables students to estimate the power dissipation of their digital circuits during the design process. This contribution presents a novel approach, the low-power design remote laboratory system that has been developed at the Bonn-Rhine-Sieg University of Applied Sciences to estimate the power dissipation of a digital circuit remotely via the internet using physical instruments and providing real data. The design takes place at abstraction level and the real data is measured at the low level from the hardware devices. The low level provides more information, which is required for accurately measured values that are hidden at the high level. The technical performance results on using the remote system show that the students are enabled to implement their digital design and to meet the performance targets of reliability as well as to observe almost all influencing factors on the design’s power dissipation.
The need for innovation around the control functions of inverters is great. PV inverters were initially expected to be passive followers of the grid and to disconnect as soon as abnormal conditions happened. Since future power systems will be dominated by generation and storage resources interfaced through inverters these converters must move from following to forming and sustaining the grid. As “digital natives” PV inverters can also play an important role in the digitalisation of distribution networks. In this short review we identified a large potential to make the PV inverter the smart local hub in a distributed energy system. At the micro level, costs and coordination can be improved with bidirectional inverters between the AC grid and PV production, stationary storage, car chargers and DC loads. At the macro level the distributed nature of PV generation means that the same devices will support both to the local distribution network and to the global stability of the grid. Much success has been obtained in the former. The later remains a challenge, in particular in terms of scaling. Yet there is some urgency in researching and demonstrating such solutions. And while digitalisation offers promise in all control aspects it also raises significant cybersecurity concerns.
Lignocellulose feedstock (LCF) provides a sustainable source of components to produce bioenergy, biofuel, and novel biomaterials. Besides hard and soft wood, so-called low-input plants such as Miscanthus are interesting crops to be investigated as potential feedstock for the second generation biorefinery. The status quo regarding the availability and composition of different plants, including grasses and fast-growing trees (i.e., Miscanthus, Paulownia), is reviewed here. The second focus of this review is the potential of multivariate data processing to be used for biomass analysis and quality control. Experimental data obtained by spectroscopic methods, such as nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR), can be processed using computational techniques to characterize the 3D structure and energetic properties of the feedstock building blocks, including complex linkages. Here, we provide a brief summary of recently reported experimental data for structural analysis of LCF biomasses, and give our perspectives on the role of chemometrics in understanding and elucidating on LCF composition and lignin 3D structure.
The antiradical and antimicrobial activity of lignin and lignin-based films are both of great interest for applications such as food packaging additives. The polyphenolic structure of lignin in addition to the presence of O-containing functional groups is potentially responsible for these activities. This study used DPPH assays to discuss the antiradical activity of HPMC/lignin and HPMC/lignin/chitosan films. The scavenging activity (SA) of both binary (HPMC/lignin) and ternary (HPMC/lignin/chitosan) systems was affected by the percentage of the added lignin: the 5% addition showed the highest activity and the 30% addition had the lowest. Both scavenging activity and antimicrobial activity are dependent on the biomass source showing the following trend: organosolv of softwood > kraft of softwood > organosolv of grass. Testing the antimicrobial activities of lignins and lignin-containing films showed high antimicrobial activities against Gram-positive and Gram-negative bacteria at 35 °C and at low temperatures (0-7 °C). Purification of kraft lignin has a negative effect on the antimicrobial activity while storage has positive effect. The lignin release in the produced films affected the activity positively and the chitosan addition enhances the activity even more for both Gram-positive and Gram-negative bacteria. Testing the films against spoilage bacteria that grow at low temperatures revealed the activity of the 30% addition on HPMC/L1 film against both B. thermosphacta and P. fluorescens while L5 was active only against B. thermosphacta. In HPMC/lignin/chitosan films, the 5% addition exhibited activity against both B. thermosphacta and P. fluorescens.
BWL-Klausuren für Dummies
(2019)
Emotion and gender recognition from facial features are important properties of human empathy. Robots should also have these capabilities. For this purpose we have designed special convolutional modules that allow a model to recognize emotions and gender with a considerable lower number of parameters, enabling real-time evaluation on a constrained platform. We report accuracies of 96% in the IMDB gender dataset and 66% in the FER-2013 emotion dataset, while requiring a computation time of less than 0.008 seconds on a Core i7 CPU. All our code, demos and pre-trained architectures have been released under an open-source license in our repository at https://github.com/oarriaga/face classification.
Primary healthcare is provided in most developing and developed countries to enhance healthcare accessibility for the population. This study accesses the impact of primary healthcare in six Sub-Saharan countries. A systematic search for qualitative and quantitative studies published before the end of 2017 was conducted online. Inclusion criteria were met by 6 studies, one each from Ghana, Malawi, Nigeria, Tanzania, Zambia and Zimbabwe. Five studies are peer-reviewed, and one is a working paper. Three studies reported on the impact of primary healthcare on healthcare accessibility. Four studies reported on the role healthcare resources play in enhancing primary healthcare services. Two other studies mentioned how cost-sharing mechanism led to an increase in healthcare utilization and how the reduction in user changes in all primary healthcare centers led to the reduction in out-of-pocket spending on healthcare services in a short-term. Primary healthcare offers access and utilization to healthcare services in most countries. It also offers protection against the detrimental effects of user fees. However, concerted efforts are still needed in most African countries in revitalizing the operations of primary healthcare centers for the improvement of healthcare services.
The paper presents the topological reduction method applied to gas transport networks, using contraction of series, parallel and tree-like subgraphs. The contraction operations are implemented for pipe elements, described by quadratic friction law. This allows significant reduction of the graphs and acceleration of solution procedure for stationary network problems. The algorithm has been tested on several realistic network examples. The possible extensions of the method to different friction laws and other elements are discussed.
Incoming solar radiation is an important driver of our climate and weather. Several studies (see for instance Frank et al. 2018) have revealed discrepancies between ground-based irradiance measurements and the predictions of regional weather models. In the realm of electricity generation, accurate forecasts of solar photovoltaic (PV)energy yield are becoming indispensable for cost-effective grid operation: in Germany there are 1.6 million PVsystems installed, with a nominal power of 46 GW (Bundesverband Solarwirtschaft 2019). The proliferation of PV systems provides a unique opportunity to characterise global irradiance with unprecedented spatiotemporalresolution, which in turn will allow for highly resolved PV power forecasts.
Die Erfindung betrifft eine Filtervorrichtung zur Anreicherung gasförmiger und/oder partikelgebundener Stoffe. Erfindungsgemäß weist Filtervorrichtung eine wenigstens abschnittsweise luftdurchlässige Umhüllung (1, 3) und ein innerhalb der Umhüllung (1, 3) vorgesehenen Adsorbens (2) zur Anreicherung gasförmiger und/oder partikelgebundener Stoffe aus durch die Umhüllung (1, 3) hindurchgetretener Luft auf, zur nachfolgenden Überprüfung mittels eines lebenden olfaktorischen Detektors und/oder eines thermodesorptionsgekoppelten Analysegeräts auf Geruchsstoffe und/oder Zielanalyten, wobei ein Teil der Umhüllung (1, 3) einen in das Adsorbens (2) hineinführend, an nur einer Seite offenen Kanal (7) ausbildet, an dem offenen Ende des Kanals (7) eine Anschlusseinrichtung (8) zum Anschluss an ein Ansaugsystem angeordnet ist und die Umhüllung (1, 3) und das Adsorbens an Luft bis wenigstens 400 °C thermostabil sind. Auf diese Weise wird eine einfache und verlässliche Möglichkeit bereitgestellt, mit einer gemeinsamen Filtervorrichtung (9) sowohl eine Überprüfung mittels eines lebenden olfaktorischen Detektors sowie nachfolgend eine Überprüfung mittels eines thermodesorptionsgekoppelten Analysegeräts auf Geruchsstoffe und/oder Zielanalyten durchführen zu können.
§ 3. [Steuerfreie Einnahmen]
(2019)
§ 3c. Anteilige Abzüge
(2019)
Miscanthus bietet als nachwachsende Industrie- und Energiepflanze zahlreiche Vorteile, die neben den direkten landwirtschaftlichen Anwendungen wie Verbrennung und Tiereinstreu auch eine stoffliche Nutzung im chemischen Bereich zulassen. Als C4-Pflanze mit gesteigerter Photosynthese-Aktivität weist Miscanthus zudem eine hohe CO2-Fixierrate auf. Aufgrund des geringen Kultivierungsaufwandes sowie der hohen Erträge bietet sich Miscanthus als ausgesprochen attraktiver Rohstoff für die Produktion erneuerbarer Kraftstoffe und Chemikalien an, welche mittels thermo-chemischer Umwandlung gewonnen werden.
Miscanthus x giganteus Stem Versus Leaf-Derived Lignins Differing in Monolignol Ratio and Linkage
(2019)
As a renewable, Miscanthus offers numerous advantages such as high photosynthesis activity (as a C4 plant) and an exceptional CO2 fixation rate. These properties make Miscanthus very attractive for industrial exploitation, such as lignin generation. In this paper, we present a systematic study analyzing the correlation of the lignin structure with the Miscanthus genotype and plant portion (stem versus leaf). Specifically, the ratio of the three monolignols and corresponding building blocks as well as the linkages formed between the units have been studied. The lignin amount has been determined for M. x giganteus (Gig17, Gig34, Gig35), M. nagara (NagG10), M. sinensis (Sin2), and M. robustus (Rob4) harvested at different time points (September, December, and April). The influence of the Miscanthus genotype and plant component (leaf vs. stem) has been studied to develop corresponding structure-property relationships (i.e., correlations in molecular weight, polydispersity, and decomposition temperature). Lignin isolation was performed using non-catalyzed organosolv pulping and the structure analysis includes compositional analysis, Fourier transform infradred (FTIR), ultraviolet/visible (UV-Vis), hetero-nuclear single quantum correlation nuclear magnetic resonsnce (HSQC-NMR), thermogravimetric analysis (TGA), and pyrolysis gaschromatography/mass spectrometry (GC/MS). Structural differences were found for stem and leaf-derived lignins. Compared to beech wood lignins, Miscanthus lignins possess lower molecular weight and narrow polydispersities (<1.5 Miscanthus vs. >2.5 beech) corresponding to improved homogeneity. In addition to conventional univariate analysis of FTIR spectra, multivariate chemometrics revealed distinct differences for aromatic in-plane deformations of stem versus leaf-derived lignins. These results emphasize the potential of Miscanthus as a low-input resource and a Miscanthus-derived lignin as promising agricultural feedstock.
Herein we report an update to ACPYPE, a Python3 tool that now properly converts AMBER to GROMACS topologies for force fields that utilize nondefault and nonuniform 1–4 electrostatic and nonbonded scaling factors or negative dihedral force constants. Prior to this work, ACPYPE only converted AMBER topologies that used uniform, default 1–4 scaling factors and positive dihedral force constants. We demonstrate that the updated ACPYPE accurately transfers the GLYCAM06 force field from AMBER to GROMACS topology files, which employs non-uniform 1–4 scaling factors as well as negative dihedral force constants. Validation was performed using β-d-GlcNAc through gas-phase analysis of dihedral energy curves and probability density functions. The updated ACPYPE retains all of its original functionality, but now allows the simulation of complex glycomolecular systems in GROMACS using AMBER-originated force fields. ACPYPE is available for download at https://github.com/alanwilter/acpype.
In Sensor-based Fault Detection and Diagnosis (SFDD) methods, spatial and temporal dependencies among the sensor signals can be modeled to detect faults in the sensors, if the defined dependencies change over time. In this work, we model Granger causal relationships between pairs of sensor data streams to detect changes in their dependencies. We compare the method on simulated signals with the Pearson correlation, and show that the method elegantly handles noise and lags in the signals and provides appreciable dependency detection. We further evaluate the method using sensor data from a mobile robot by injecting both internal and external faults during operation of the robot. The results show that the method is able to detect changes in the system when faults are injected, but is also prone to detecting false positives. This suggests that this method can be used as a weak detection of faults, but other methods, such as the use of a structural model, are required to reliably detect and diagnose faults.
Bond graph software can simulate bond graph models without the user needing to manually derive equations. This offers the power to model larger and more complex systems than in the past. Multibond graphs (those with vector bonds) offer a compact model which further eases handling multibody systems. Although multibond graphs can be simulated successfully, the use of vector bonds can present difficulties. In addition, most qualitative, bond graph–based exploitation relies on the use of scalar bonds. This article discusses the main methods for simulating bond graphs of multibody systems, using a graphical software platform. The transformation between models with vector and scalar bonds is presented. The methods are then compared with respect to both time and accuracy, through simulation of two benchmark models. This article is a tutorial on the existing methods for simulating three-dimensional rigid and holonomic multibody systems using bond graphs and discusses the difficulties encountered. It then proposes and adapts methods for simulating this type of system directly from its bond graph within a software package. The value of this study is in giving practical guidance to modellers, so that they can implement the adapted method in software.
IT-Leistungen vermischen sich zunehmend mit Business-Leistungen. Bisher verbinden Anwender "Lizenzierung" lediglich mit softwaretechnologischen sowie lizenzrechtliche Fragestellungen. Software- und Businessstrategie wurden als getrennte Bereiche eingestuft und von verschiedenen Personen verantwortet. Bedingt durch die "Verschmelzung von Software und Hardware sowie Serviceanteilen" zu Cloud-Diensten, kann man im Rahmen von "Lizenzierung" nun über Outsourcing „durch die Hintertür“ sprechen.
Die unterschiedlichen Facetten der digitalen Zukunft zu beleuchten – sei es die aktive Gestaltungsaufgabe der Politik, die ethischen und moralischen Anpassungen durch Digitalisierung in der Gesellschaft oder die technische und wirtschaftliche Verantwortung – und in Bezug zueinander zu setzen, ist Aufgabe und Ziel dieser Publikation. Im Zuge der digitalen Transformation ist zudem der Ruf nach einer neuen Kultur für Gesellschaft, Politik und Wirtschaft geboten.
This paper reports on a short-term study abroad program which used cooperative international research projects to enhance the program experience. Both individualized small group research projects and a joint multinational public opinion survey were integrated into the program. The projects were designed to force the program participants to systematically confront key issues associated with the International Finance theme of the program before, during, and after the off-campus period. Thus, the projects served to prepare the program participants for the program, enhance the off-campus period, and provide a lens through which the participant could reflect on their experiences. While this paper reports the experience primarily from the U.S. university group’s perspective, the impact and integration at the other partner schools is discussed. The authors wish to express their gratitude to everyone who supported the effort at each stage of the process and at each location involved in the program.
To save energy and reduce environmental impacts, new technologies towards a development of a sustainable ‘greener’ economy are needed. The main opportunity to improve sustainability by reducing emissions is within the transport sector. More than 90% of all goods worldwide are transported by ships. Particularly maritime ships using heavy fuel oil and marine gas oil play a major role. The total fuel consumption of shipping in 2016 was about 250 m t (domestic ca. 50 m t, international shipping ca. 200 m t). The vast portion of the energy consumption of a ship is the need to overcome the drag between ship hull and water—depending on the shape of the vessel and its size up to 90% of total fuel consumption. This means reducing drag helps to save fuel and reduces carbon emissions as well as pollution considerably. Different techniques for drag reduction are known, e.g. the micro-bubble technique or the bulbous bow. We investigated a novel bioinspired technique since 2002: the application of biomimetic surfaces with long-term stable air layers on ship hulls, serving as a slip agent. This technology is based on the Salvinia Effect, allowing a permanent stabilization of air layers under water. In this case study, we analysed the possible savings, which also could be combined with modified micro-bubble technologies.
Gefährdet die Nutzung von Gesundheits-Apps und Wearables die solidarische Krankenversicherung?
(2019)
Blutdruck messen, Schrittzahl verfolgen, Schlaf kontrollieren, Zuckerwerte im Blick haben und sogar die Durchführung von EKGs – dies sind nur einige der Anwendungen, die ein gängiges Mobiltelefon oder eine Smartwatch mit entsprechender Software durchführen können. Apps und Wearables (so werden am Körper getragene Computertechnologien genannt) werden in ihren Einsatzmöglichkeiten immer vielfältiger.
Synthesis of Substituted Hydroxyapatite for Application in Bone Tissue Engineering and Drug Delivery
(2019)
Designing consumption feedback to support sustainable behavior is an active research topic. In recent years, relevant work has suggested a variety of possible design strategies. Addressing the more recent developments in this field, this paper presents a structured literature review, providing an overview of current information design approaches and highlighting open research questions. We suggest a literature-based taxonomy of used strategies, data source and output media with a special focus on design. In particular, we analyze which visual forms are used in current research to reach the identified strategy goals. Our survey reveals that the trend is towards more complex and contextualized feedback and almost every design within sustainable HCI adopts common visualization forms. Furthermore, adopting more advanced visual forms and techniques from information visualization research is helpful when dealing with ever-increasing data sources at home. Yet so far, this combination has often been neglected in feedback design.